US008234477B2

a2 United States Patent 10) Patent No.: US 8,234,477 B2
Shaath (45) Date of Patent: *Jul. 31, 2012
(54) METHOD AND SYSTEM FOR PROVIDING (58) Field of Classification Search None

RESTRICTED ACCESS TO A STORAGE
MEDIUM
Inventor:

(75) Kamel Shaath, Kanata (CA)

(73) Assignee: KOM Networks, Inc., Kanata, Ontario
(CA)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 558 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 12/431,387
Filed: Apr. 28, 2009

Prior Publication Data

US 2009/0271586 Al Oct. 29, 2009

(65)

Related U.S. Application Data

(60) Continuation-in-part of application No. 11/482,115,
filed on Jul. 7, 2006, now Pat. No. 7,536,524, which is
a continuation-in-part of application No. 10/600,540,
filed on Jun. 23, 2003, now Pat. No. 7,076,624, which
is a continuation of application No. 10/032,467, filed
on Jan. 2, 2002, now Pat. No. 6,654,864, which is a
division of application No. 09/267,787, filed on Mar.
15, 1999, now Pat. No. 6,336,175.

(30) Foreign Application Priority Data

Jul. 31, 1998
(D

(52)

(7N Y 2244626

Int. Cl1.
GO6F 12/00 (2006.01)
US.CL i 711/163

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
3,996,564 A 12/1976 Kerrigan et al.
4,399,504 A 8/1983 Obermarck et al.
4,686,620 A 8/1987 Ng
4,701,848 A 10/1987 Clyde
4,757,533 A 7/1988 Allen et al.
4,776,537 A 10/1988 Garside et al.
4,825,354 A 4/1989 Agrawal et al.
4,887,204 A 12/1989 Johnson et al.
4,888,798 A 12/1989 Earnest
4,890,223 A 12/1989 Cruess et al.
4,914,571 A 4/1990 Baratz et al.
4947318 A 8/1990 Mineo et al.
4958314 A 9/1990 Imai et al.
4,975,898 A 12/1990 Yoshida et al.
4,989,206 A 1/1991 Dunphy, Jr. et al.
5,029,199 A 7/1991 Jones et al.
5,050,212 A 9/1991 Dyson
5,089,958 A 2/1992 Horton et al.

(Continued)

Primary Examiner — Hiep Nguyen
(74) Attorney, Agent, or Firm — Albrecht Tousi & Farnum
PLLC; Ralph P. Albrecht

(57) ABSTRACT

A method of restricting file access is disclosed wherein a set
of file write access commands are determined from data
stored within a storage medium. The set of file write access
commands are for the entire storage medium. Any matching
file write access command provided to the file system for that
storage medium results in an error message. Other file write
access commands are, however, passed onto a device driver
for the storage medium and are implemented. In this way
commands such as file delete and file overwrite can be dis-
abled for an entire storage medium.

60 Claims, 7 Drawing Sheets

/-)Subsystem 102

/ruurn handie
a
N

104 ndlor
Ouser mods /

open (D
(flle 0bject) e
request "

TSTATUS
kernelmode
106

~look up object name
| object 12

Manager

1/O System Services (] ~Check access rights
108

> Securlty
114

1/I0 Manager
110

[e 24

110 stack [
location

..... 170 stack
& é location [

ol

H compliete op

@"copy 10 Status
to subsystem
address space

locate ,
file object

eressssscrnins a0 Cate
IRP

¢ —~]. < callappropriate -
< RP

device driver

eration,
return IRP with
11O Status

file system 118

"
-"..
o
file system

mass-storage devices

US 8,234,477 B2

Page 2

5,095,423
5,103,476
5,157,663
5,163,147
5,182,770
5,193,154
5,193,184
5,206,951
5,214,627
5,222,242
5,241,668
5,241,670
5,247,681
5,276,867
5,287,504
5,317,728
5,325,532
5,333,315
5,347,628
5,347,653
5,367,698
5,369,770
5,377,323
5,379,423
5,410,700
5,412,808
5,416,842
5,425,028
5,432,851
5,434,562
5,434,974
5,450,576
5,493,607
5,495,533
5,495,619
5,497,484
5,513,314
5,519,833
5,530,757
5,537,636
5,544,347
5,548,532
5,548,646
5,559,957
5,559,991
5,564,011
5,564,054
5,572,675
5,584,008
5,592,683
5,594,863
5,596,711
5,596,755
5,606,609
5,615,392
5,623,601
5,625,693
5,630,076
5,638,509
5,642,496
5,652,913
5,661,848
5,668,958
5,671,442
5,676,723
5,682,513
5,687,343
5,696,895
5,701,462
5,708,650
5,708,776
5,710,930
5,717,683
5,729,743
5,737,747
5,748,736
5,751,287
5,751,997

U.S. PATENT DOCUMENTS

D 0 3 0 B e e e 0 D D 0 0 0 B B 0 0 e 0 0 0 B D 0 0 0 D e 0 0 D B 0 0 0 0 D 0 0 B D B B 0 0 0 B 0 D B D 0 0 0 D 0 0 D B B 0 0 0 B D

3/1992
4/1992
10/1992
11/1992
1/1993
3/1993
3/1993
4/1993
5/1993
6/1993
8/1993
8/1993
9/1993
1/1994
2/1994
5/1994
6/1994
7/1994
9/1994
9/1994
11/1994
11/1994
12/1994
1/1995
4/1995
5/1995
5/1995
6/1995
7/1995
7/1995
7/1995
9/1995
2/1996
2/1996
2/1996
3/1996
4/1996
5/1996
6/1996
7/1996
8/1996
8/1996
8/1996
9/1996
9/1996
10/1996
10/1996
11/1996
12/1996
1/1997
1/1997
1/1997
1/1997
2/1997
3/1997
4/1997
4/1997
5/1997
6/1997
6/1997
7/1997
8/1997
9/1997
9/1997
10/1997
10/1997
11/1997
12/1997
12/1997
1/1998
1/1998
1/1998
2/1998
3/1998
4/1998
5/1998
5/1998
5/1998

Gramlich et al.
Waite et al.
Major et al.
Orita et al.
Medveczky et al.
Kitajima et al.
Belsan et al.
Khoyi
Nakashima et al.
Choi et al.
Eastridge et al.
Eastridge et al.
Janis et al.
Kenley et al.
Carpenter et al.
Tevis et al.
Crosswy et al.
Saether et al.
Brewer et al.
Flynn et al.
Webber et al.
Thomason et al.
Vasudevan
Mutoh et al.
Fecteau et al.
Bauer

Aziz

Britton et al.
Scheidt et al.
Reardon
Loucks et al.
Kennedy
Arumainayagam et al.
Linehan et al.
May et al.
Potter et al.
Kandasamy et al.
Agranat et al.
Krawcezyk
Uchida et al.
Yanai et al.
Menand et al.
Aziz et al.

Balk

Kanfi

Yammine et al.
Bramnick et al.
Bergler et al.
Shimada et al.
Chen et al.
Stiles
Burckhartt et al.
Pletcher et al.
Houser et al.
Harrison et al.
Vu

Rohatgi et al.
Saulpaugh et al.
Dunphy et al.
Kanfi

Crick et al.
Bonke et al.
Bendert et al.
Feeney et al.
Ekrot et al.
Candelaria et al.
Fecteau et al.
Hemphill et al.
Whitney et al.
Nakashima et al.
Kikinis

Laney et al.
Yoshimoto et al.
Squibb
Vishlitzky et al.
Mittra

Hahn et al.
Kullick et al.

5,758,359
5,761,677
5,765,151
5,771,354
5,778,168
5,778,365
5,781,633
5,781,797
5,799,088
5,802,080
5,813,009
5,813,017
5,825,728
5,828,893
5,832,522
5,838,326
5,842,214
5,850,566
5,854,759
5,881,229
5,901,327
5,922,072
5,924,102
5,925,126
5,931,935
5,936,624
5,949,601
5,950,203
5,956,475
5,956,481
5,969,720
5,974,546
5,974,549
5,978,914
5,987,478
5,991,753
6,000,032
6,014,744
6,014,767
6,021,415
6,044,373
6,048,090
6,061,788
6,076,148
6,078,990
6,079,016
6,088,803
6,098,158
6,101,506
6,101,601
6,105,122
6,141,754
6,148,369
6,148,412
6,154,787
6,161,111
6,161,139
6,163,856
6,167,402
6,173,417
6,240,421
6,266,679
6,266,785
6,269,431
6,275,953
6,286,087
6,301,592
6,324,581
6,330,570
6,336,175
6,336,187
6,343,324
6,345,299
6,356,915
6,381,619
6,393,560
6,438,642
6,453,353
6,480,962

B e B e > 0 3 D B e 0 > 0 e 0 0 0 D B e 0 0 0 B 0 B 0 D 0 e 0 0 D B D 0 0 B B 0 B 0 B D B B 0 0 D D

Bl

5/1998
6/1998
6/1998
6/1998
7/1998
7/1998
7/1998
7/1998
8/1998
9/1998
9/1998
9/1998
10/1998
10/1998
11/1998
11/1998
11/1998
12/1998
12/1998
3/1999
5/1999
7/1999
7/1999
7/1999
8/1999
8/1999
9/1999
9/1999
9/1999
9/1999
10/1999
10/1999
10/1999
11/1999
11/1999
11/1999
12/1999
1/2000
1/2000
2/2000
3/2000
4/2000
5/2000
6/2000
6/2000
6/2000
7/2000
8/2000
8/2000
8/2000
8/2000
10/2000
11/2000
11/2000
11/2000
12/2000
12/2000
12/2000
12/2000
1/2001
5/2001
7/2001
7/2001
7/2001
8/2001
9/2001
10/2001
11/2001
12/2001
1/2002
1/2002
1/2002
2/2002
3/2002
4/2002
5/2002
8/2002
9/2002
11/2002

Saxon

Senator et al.
Senator
Crawford
Fuller
Nishiyama et al.
Tribble et al.
Crick et al.
Raike

Westby
Johnson et al.
Morris
Yoshimoto et al.
Wied et al.
Blickenstaff et al.
Card et al.
Whitney et al.
Solan et al.
Kaliski, Jr. et al.
Singh et al.
Ofek
Hutchinson et al.
Perks

Hsieh

Cabrera et al.
Lisle et al.
Braithwaite et al.
Stakuis et al.
Burckhartt et al.
Walsh et al.
Lisle et al.
Anderson
Golan

Carley et al.

See et al.

Wilde

Millard
McKaughan et al.
Glaise

Cannon et al.
Gladney et al.
Zook

Reynaud et al.
Kedem

Frazier

Park

Tso et al.

Lay et al.

Ukai et al.
Matthews et al.
Muller et al.
Choy

Ofer et al.
Cannon et al.
Urevig et al.
Mutalik et al.
Win et al.

Dion et al.
Yeager

Merrill

Stolarz
Szalwinski et al.
McDowell
Dunham
Vahalia et al.

Ito et al.
Aoyama et al.
Xu et al.
Crighton et al.
Shaath et al.
Kern et al.
Hubis et al.
Segal
Chtchetkine et al.
Borowsky et al.
Merrill et al.
Shaath et al.
Win et al.
Touboul

US 8,234,477 B2

Page 3
6,487,561 Bl 11/2002 Ofek et al. 2004/0010487 Al 1/2004 Prahlad et al.
6,487,644 Bl 11/2002 Huebsch et al. 2004/0107417 Al 6/2004 Chia et al.
6,542,972 B2 4/2003 Ignatius et al. 2004/0154040 Al 82004 Ellis
6,564,228 Bl 5/2003 O’Connor 2004/0193760 Al 9/2004 Matsunami et al.
6,581,020 Bl 6/2003 Buote et al. 2005/0055211 Al 3/2005 Claudatos et al.
6,581,143 B2 6/2003 Gagne et al. 2005/0065961 Al 3/2005 Aguren
6,654,864 B2 11/2003 Shaath et al. 2005/0108393 Al 5/2005 Banerjee et al.
6,658,436 B2 12/2003 Oshinsky et al. 2005/0114406 Al 5/2005 Borthakur et al.
6,658,526 B2 12/2003 Nguyen et al. 2005/0119994 Al 6/2005 Matsunami et al.
6,681,198 B2 1/2004 Buote et al. 2005/0144202 Al 6/2005 Chen
6,681,230 Bl 1/2004 Blott et al. 2005/0193173 Al 9/2005 Ring et al.
6,714,513 Bl 3/2004 Joiner et al. 2005/0201297 Al 9/2005 Peikari
6,728,884 Bl 4/2004 Lim 2005/0203964 Al 9/2005 Matsunami et al.
6,732,124 Bl 5/2004 Koseki et al. 2005/0216762 Al 9/2005 Peikari
6,748,504 B2 6/2004 Sawdon et al. 2005/0223242 Al 10/2005 Nath
6,751,635 Bl 6/2004 Chen et al. 2005/0223414 Al 10/2005 Kenrich et al.
6,754,705 B2 6/2004 Joiner et al. 2005/0229250 Al 10/2005 Ring et al.
6,778,346 B2 8/2004 Takayama et al. 2005/0240572 Al 10/2005 Sung et al.
6,789,117 Bl 9/2004 Joiner et al. 2005/0240658 Al 10/2005 Schulke
6,801,902 Bl 10/2004 David 2005/0246376 Al 11/2005 Lu et al.
6,820,136 Bl 11/2004 Pham et al. 2005/0246386 Al 11/2005 Sullivan et al.
6,892,211 B2 5/2005 Hitz et al. 2006/0004818 Al 1/2006 Claudatos et al.
6,892,227 Bl 5/2005 Elwell et al. 2006/0004820 Al 1/2006 Claudatos et al.
6,941,358 Bl 9/2005 Joiner et al. 2006/0004847 Al 1/2006 Claudatos et al.
6,959,320 B2 10/2005 Shah et al. 2006/0004868 Al 1/2006 Claudatos et al.
7,007,048 Bl 2/2006 Murray et al. 2006/0010154 Al 1/2006 Prahlad et al.
7,051,050 B2 5/2006 Chen et al. 2006/0010241 Al 1/2006 Kudallur et al.
7,062,783 Bl 6/2006 Joiner 2006/0020616 Al 1/2006 Hardy et al.
7,065,538 B2 6/2006 Aronoff et al. 2006/0059172 Al 3/2006 Devarakonda
7,069,380 B2 6/2006 Ogawa et al. 2006/0095514 Al 5/2006 Wang et al.
7,073,059 B2 7/2006 Worely, Jr. et al. 2006/0136685 Al 6/2006 Griv et al.
7,076,624 B2 7/2006 Shaath et al. 2006/0149735 Al 7/2006 DeBie et al.
7,092,839 B2 8/2006 Buote et al. 2006/0165002 Al 7/2006 Hicks et al.
7,113,948 B2 9/2006 Jhingan et al. 2006/0174345 Al 8/2006 Flanagan et al.
7,152,242 B2 12/2006 Douglas 2006/0179061 Al 82006 D’Souza et al.
7,154,857 Bl 12/2006 Joiner et al. 2006/0190925 Al 8/2006 Ishii et al.
7,155,466 B2 12/2006 Rodriguez et al. 2006/0230086 Al 10/2006 Devarakonda et al.
7,171,532 B2 1/2007 Kodama 2006/0230244 Al 10/2006 Amarendran et al.
7,216,366 Bl 5/2007 Razetal. 2006/0245371 Al 11/2006 Joiner et al.
7,233,959 B2 6/2007 Kanellos et al. 2006/0259901 Al 11/2006 Kaplan
7,246,207 B2 7/2007 Kottomtharayil et al. 2007/0022287 Al 1/2007 Beck et al.
7,254,588 B2* 8/2007 Sungetal. ... 707/769 2007/0055711 Al 3/2007 Polyakov et al.
7,287,053 B2 10/2007 Bodin 2007/0055715 Al 3/2007 Achiwa
7,292,993 B2 11/2007 Uzzo et al. 2007/0067844 Al 3/2007 Williamson et al.
7,293,131 B2 11/2007 Ogawa et al. 2007/0079126 Al 4/2007 Hsu et al.
7,401,082 B2 7/2008 Keene et al. 2007/0079178 Al 4/2007 Gassoway
7,401,229 B2 7/2008 Ishidoshiro 2007/0094312 Al 4/2007 Sim-Tang
7,451,435 B2 11/2008 Hunt et al. 2007/0143371 Al 6/2007 Kottomtharayil
7,493,646 B2 2/2009 Ellis 2007/0143756 Al 6/2007 Gokhale
7,512,578 B2 3/2009 Abnous et al. 2007/0180529 Al 82007 Costea et al.
7,536,524 B2 5/2009 Shaath et al. 2007/0183224 Al 8/2007 Erofeev
7,647,308 B2 1/2010 Sallam 2007/0185934 Al 8/2007 Cannon et al.
7,651,593 B2 1/2010 Prahlad et al. 2007/0260640 Al 11/2007 Hamilton et al.
7,657,941 Bl 2/2010 Zaitsev 2007/0261112 Al 11/2007 Todd et al.
7,735,100 Bl 6/2010 Sallam 2007/0271306 Al 11/2007 Brown et al.
2002/0004883 Al 1/2002 Nguyen et al. 2007/0271610 Al 11/2007 Grobman
2002/0030100 Al 3/2002 Katayanagi et al. 2008/0002830 Al 1/2008 Cherkasov et al.
2002/0035696 Al 3/2002 Thacker 2008/0016571 Al 1/2008 Chang
2002/0046320 Al 4/2002 Shaath 2008/0043274 Al 2/2008 Wang et al.
2002/0069214 Al 6/2002 Smith et al. 2008/0046563 Al 2/2008 Banerjee et al.
2002/0111956 AL 8/2002 Yeo et al. 2008/0120465 Al 52008 Brannon etal
2003/0046586 Al 3/2003 Bheemarasetti et al. 2008/0133719 Al 6/2008 Amitai ef al ’
2003/0159070 Al 8/2003 Mayer et al. :
2003/0177385 Al 9/2003 Price et al. * cited by examiner

US 8,234,477 B2

Sheet 1 of 7

Jul. 31, 2012

U.S. Patent

S99lA9p abBrIO)S-SSE W

aeare

amat
-
aeett
R ey

<= lUoljeiado
peysenbal

waysks a4

a9l wayshs ajt}

1no Kiseo™..,

} ol

ooeds ssaoippe
woajsAsqns o}
snjeyg O/ Adoxy,

snieys Ofl
Yyt m 4yl uinyaa
‘uojlessdo sj3eid woo

18A1Up @D|ADD

ccl

9zl
D N W BCCIECEEY
T asers oy d i

‘=tdam,,d UOIIRD O}
d¥l Uum sioalup Noeys O/

wum_‘_ao._o_am__au.ﬁW / \
d ol

171
d ¥l

D1 R D O B reeerramssrerernees]

©
I 0Ll
1eberue iy O/l

1aAllp
weiyshs 9y

w399l qo oy

" ajeno @

i1

Alanosag

syybBi1) ssao00e yoayo*

19Bbeue p

80}
S95IA1IdS wWarsAsg O]

2Ll 1028lg 0

sweujosafqo dn ool

801

apow |[duUlay

dpow Jiasnh

353N DB SALVYLSLN
s (10 8f g o any) Jojpue 0l

uado afpuey uinjai
@) B

N

20l waisAsqgng

US 8,234,477 B2

Sheet 2 of 7

Jul. 31, 2012

U.S. Patent

¢ Old

s ot e o e

-

pers ~
o

o

.’ ’,
.

1sanbays)aiduionol dull ™
19)oedIXONMEISO|

A
(pojesoyie-asd)y
(uoneiado Q] uaaup
-ydnuiejul 9)9|dwos)

pajo|dwos yim

1

1

1

wajshs ajiy 1ed !}
1

BN L
]

3

Y
s

(uinyaa pue as1A8p
uo uojjesddo uels)

sz | 12lqoe|idnd

622 Va yoelqoesiregnd

v77 T 00O NN dut
277 T XXX PN ddl

\

~.,

] uoneso|

~TC

«©
P
=

%9e3s Of|

{pejeoO|IR
~qsd)
dyl

4

I
JeAup
aojAap

m—
Y
1

Jonordiegol |/
Buipuagdapprepol /

uonesooeISdiIXeNIoDo|
{sunnoyuone)dwoniagol

o

dijeeoo||yo)

1
1
I
1]
]
1
!
1
1
i
i
1
1
1
i
1
1
]
[}
t
1
1
1
!
[}
1
1
1
1
[}
1
1
1

1

]

1)

1

1

’ i
“"0z) sauipnoy |}
N upoddng |
JBALIP N uoneo|) __
waysAs ajy ¥, 10 O XXXO| i
K i
h uoi1edo0] “
%0818 O/l |

0Ll i

(302(qo 3yy) dall ;
A ysenbas | yg1 [faeBeuep o/l /

Y

A

N,
.
~,

~, -
IlllllII||IIIIlIIIlIIIIlIlIIlll\l

. @Jam/peal @

|
4
4
\\

4

rLd

US 8,234,477 B2

Sheet 3 of 7

Jul. 31, 2012

U.S. Patent

v0t

HIAVT dvdl | —~
7~

7/
/
/

/

€ Ol

0Le

A

Z0g

HIAVT NOILVYO[1ddY

P HIAVTWILSAS 3714

80€

> AVYdSIA

908 d3AY]
1ndLno
LNdNI

US 8,234,477 B2

Sheet 4 of 7

Jul. 31, 2012

U.S. Patent

S991A9p 9bEIO)S-S58E W

$0¢ Jafe— desy

-
arm
«=‘Uolyesndo
paijsanbou

jno Asae?d

woayshs a4

all

wajishs a1y

1433

Ailannsag

s3yBill ss8902%e RoaYyo*

18 A1lD 4S8 BCCIEERT

@ 02l warshs oy A2e3ys O/l
o timn] UOCIIED O]
d¥l UM S1eAp T woeys off

ooeds ssasppe
snjeys 0/l walyshksqgns o}
Yyl m d Yt uanyal snjelg 0Off Adoyo
el ‘uoljjessdo 83ajd woo D

9zl

sjeisdoidde ||eo.o
(©] [~ dyl
iZA}
d ¥l

ejed0(|e

@
T oLl

l1ebeue
Zhi 192(q 0

S8dIAlag walshAg O

....wo%ﬁ_%ooo_w_w 19Bbeuep O/
801
n

soweujsefqo dn oo}

90}

spouw [ausay

;m:f: w:h,:mpz \ muoE;m:
(13o08lqo oa11y) iojpue

70l
©) usdo slpuey :‘_:umh\e

¢0l

/\ woajsAsqng

US 8,234,477 B2

Sheet S of 7

Jul. 31, 2012

U.S. Patent

e —

G Ol
218 -
HIARA 30IA3T OL WO
H3IAYTWILSAS 3114 OL
1S3N0O3Y AdITONW 183N03Y JAINOEd

NOILVOITddY OL JOddd AN3S

015

8

JOVH0LS
140ddNns
WNId3aN
4OVH0LS

Q3141aon
ElS
183n03y
NYD

05

e 133N03Y LdIDHIINI
JOVHOLS V.LVA ¥O4
205 — | 1S3ND3y 3aIA0Nd

US 8,234,477 B2

Sheet 6 of 7

Jul. 31, 2012

U.S. Patent

ag —] G 914 40 AOH.L3N WHO4H3d

g0s — | ¥FAVT VML IHL 40 ANO OL Y.L¥a JAINOYd

9 Ol

d3IAVTNTLSAS 3714 FHL ANY

WNIGJW FOVHOLS 3INNOW IHL A8 d3.L40ddNS

s0s —] SLSINDIY ONININYILIA NI ISN HO4 Y1¥a ava
A SNOILOIM1S3Y SS300Y

709 3ININYIL3A OL WNIAIN JDVHOLS NO ¥L¥a avay
209 -] WNIQ3W 39YHOLS INNOW

US 8,234,477 B2

Sheet 7 of 7

Jul. 31, 2012

U.S. Patent

JARIE
NOILYDIIQON oLe
ANV NOSIVAINOD P
183n03y MAAYT
WALSAS 3114
/'y
80¢
> AY1dSIa
90¢
v v JIAVT LNdLNO/LNGNI
c0g
HIAYT
NOILYOI1ddY

US 8,234,477 B2

1
METHOD AND SYSTEM FOR PROVIDING
RESTRICTED ACCESS TO A STORAGE
MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation-in-part of U.S. patent
application Ser. No. 11/482,115 filed on Jul. 7, 2006; which
was a Continuation-in-part of U.S. patent application Ser. No.
10/600,540, now U.S. Pat. No. 7,076,624 issued Jul. 11,
2006; which was a Continuation application of U.S. patent
application Ser. No. 10/032,467, now U.S. Pat. No. 6,654,864
issued Nov. 25, 2003; which was a Divisional application of
U.S. patent application Ser. No. 09/267,787, now U.S. Pat.
No. 6,336,175 issued Jan. 1, 2002; which claimed priority to
Canadian Application 2,244,626 filed Jul. 31, 1998 and
issued Jan. 31, 2000. The foregoing are incorporated herein
by reference in their respective entireties.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to data storage and more
particularly to a method of providing restricted write access
on a data storage medium.

2. Related Art

In the past, operating systems restricted file access based
on three criteria. The first criterion relates to the physical
limitations of the storage device. For example, a CD-ROM
drive only provides read access and therefore is restricted to
read-only operation. The second relates to limitations of the
storage medium. For example, a CD is a read-only medium, a
CDR is aread/write medium but when a CD is full, the writer
becomes a read-only medium, and so forth. The third relates
to file access privileges. For example, in the UNIX operating
system a file is stored with a set of access privileges including
read and write privileges. Some files are read only and others
are read/write and so forth.

Unfortunately, these access privileges fail to adequately
provide protection for archival storage devices such as mag-
netic tape or removable optical media.

An example of a popular operating system is Windows
NT®. Using Windows NT®, device drivers are hidden from
applications by a protected subsystem implementing a pro-
gramming and user interface. Devices are visible to user-
mode programs, which include protected subsystems, only as
named file objects controlled by the operating system input/
output (IO) manager. This architecture limits an amount of
knowledge necessary to implement device drivers and appli-
cations. In order to provide reasonable performance, the two
separated systems, device drivers and applications, operate
independently.

For example, when a write operation is requested by an
application, the request is made via a file object handle. The
application does not actually communicate with the storage
device nor does the device driver for that storage device
communicate with the application. Each communicates with
the operating system independently. Thus, when the write
command is issued for writing data to a device, the data is
stored in buffer memory while the destination device is being
accessed. A successful completion status is provided to the
application. When the destination storage device is available,
the stored data is written to the destination storage device.
When the storage device is unavailable or fails to support
write operations, the data is not successfully written. An error
message may result, but will not be directed toward the appli-

20

25

30

35

40

45

50

55

60

65

2

cation since it is not known to the device driver or is inacces-
sible. For example, the application may have terminated
before the error occurs. Alternatively, no error message
results and when the buffer is flushed or when the system is
rebooted, the data is lost. Neither of these results is acceptable
in normal computer use.

Fortunately, most devices are easily verified as to their
capabilities. Read only devices are known as well as are
read/write devices. Because a CD-ROM drive never becomes
a read/write device, it is easily managed. When a device
supports both read/write media and read only media the prob-
lem becomes evident.

In order better to highlight the problem, an example is
presented. When a hard disk is full, accessing a file results in
updating of file information relating to a last access date and
so forth, journaling. File access information is updated each
time a file is retrieved. The information requires no extra
memory within the hard disk and therefore, the status of the
hard disk, full or available disk space, is unimportant since the
new file access information overwrites previous file access
information. Thus, the file system writes to storage media
even when full, so long as the capability of doing so exists.

When an archive data store is used with a data store device,
it is often desirable that it not be written to. Therefore, access-
ing a file requires that the file access information is not
updated—journaling is not performed. Unfortunately, when
the data store device is accessed via a read/write file object
handle, updating of the file access information is performed
by the file system. As such, the data store is altered even when
this is not desired. Further, since a single data store device
accepts any number of different data stores during a period of
time when the file system is in continuous operation, it is
impractical if not impossible to remount the data store device
with a new data store device driver and a new file object
handle whenever the read/write privileges change. Currently,
there is no adequate solution to overcome this problem.

In an attempt to overcome these and other limitations of the
prior art, it is an object of the present invention to provide a
method of limiting access privileges for a storage medium
that supports increased flexibility over those of the prior art.

BRIEF SUMMARY OF THE INVENTION

In accordance with the invention there is provided a
method of providing restricted access to a storage medium in
communication with a computer comprising the step of:
executing a file system layer on the computer, the file system
layer supporting a plurality of file system commands; execut-
ing a trap layer on the computer, the trap layer logically
disposed above the file system layer; providing to the trap
layer at least a disabled file system command relating to the
storage medium and supported by the file system for the
storage medium; intercepting data provided to the file system
layer including an intercepted file system command; compar-
ing the intercepted file system command to each of the at least
a disabled file system command to produce at least a com-
parison result; and, when each of the at least a comparison
result is indicative of other than a match, providing the inter-
cepted file system command to the file system layer.

In some embodiments an application layer is in execution
logically above the trap layer such that the trap layer is logi-
cally disposed between the application layer and the file sys-
tem layer; and when a comparison result from the at least a
comparison result is indicative of a match, providing an error
indication to the application layer. Preferably, the error indi-
cation is provided from the trap layer.

US 8,234,477 B2

3

In accordance with the invention there is further provided a
method of restricting access to a storage medium in commu-
nication with a computer, the method comprising the step of:
executing a file system layer on the computer, the file system
layer supporting a plurality of file system commands; provid-
ing to the file system layer at least a disabled file system
command for the storage medium, the disabled file system
command supported by the file system for the storage
medium, the at least a disabled file system command being
other than all write commands, other than all read commands,
and other than all write commands and all read commands;
comparing file system commands provided to the file system
layer to each of the at least a disabled file system command to
produce at least a comparison result; and, when each of the at
least a comparison result is indicative of other than a match,
executing the file system command.

In an embodiment the method also comprises the following
steps: providing an indication of a data write access privilege
for the entire logical storage medium, the data write access
privilege indicative of a restriction to alteration of a same
portion of each file stored on the logical storage medium; and
restricting file access to the logical storage medium in accor-
dance with the indication while allowing access to free space
portions of the same logical storage medium.

In accordance with the invention there is also provided a
method of restricting access by a computer to a storage
medium other than a write once medium in communication
with the computer, the method comprising the steps of: pro-
viding an indication of a data write access privilege for the
entire logical storage medium indicating a disabled operation
relating to alteration of a portion of each file stored within the
logical storage medium, the indication other than a read only
indication; and, restricting file access to each file within the
logical storage medium in accordance with the same indica-
tion while allowing access to free space portions of the same
logical storage medium. In an embodiment the indication
comprises at least one of the following: write access without
delete, write access without rename; write access without
overwrite, and write access without changing file access
privileges.

In accordance with the invention there is also provided a
method of restricting access by a computer to a storage
medium other than a write once medium in communication
with the computer, the method comprising the steps of: pro-
viding an indication of a data write access privilege for the
entire logical storage medium indicating a disabled operation
relating to alteration of data within the logical storage
medium, the indication other than a read only indication, the
disabled operations supported by the storage medium; and
restricting write access to data within the logical storage
medium in accordance with the same indication while allow-
ing access to free space portions of the same logical storage
medium. A logical storage medium consists of a single physi-
cal storage medium or a single partition within a storage
medium. Typically a disabled operation relates to destruction
of data stored within a storage medium. Operations of this
type include delete file, overwrite file, and rename file.

The present invention is preferably applied to removable
storage media and more preferably to optical storage media
such as removable optical rewritable disks.

According to an exemplary aspect of the present invention,
restricted write access privileges for data stored within a data
storage medium are supported. Advantageously, access privi-
leges of this type allow write access to storage media or data
files but limit that access in certain respects. These restrictions
permit some level of control over a storage medium while
providing some write privileges. An exemplary embodiment

20

25

30

35

40

45

50

55

60

65

4

of the present invention may include, in an exemplary
embodiment, a method for applying an operation access
privilege to a storage medium, comprising: associating an
access privilege with at least a portion of the storage medium;
intercepting an attempted operation on at least a portion of the
storage medium, wherein intercepting occurs regardless of an
identity of a user attempting the attempted operation; com-
paring the attempted operation to the access privilege; and
allowing, or denying the attempted operation based on com-
paring the attempted operation to the access privilege.

According to an exemplary aspect of the present invention,
the method may include allowing or denying occurs transpar-
ently to the user and transparently to a computer application
invoking the attempted operation.

According to an exemplary aspect of the present invention,
the method may include wherein the storage medium is a
logical storage medium.

According to an exemplary aspect of the present invention,
the method may include, wherein the logical storage medium
comprises one or more logical portions.

According to an exemplary aspect of the present invention,
the method wherein the associating an access privilege with at
least a portion of the storage medium comprises associating at
least one of an enabled operation or a restricted operation.

According to an exemplary aspect of the present invention,
the method may include where the allowing or denying the
attempted operation further comprises allowing the
attempted operation when the attempted operation matches
one of the enabled operations.

According to an exemplary aspect of the present invention,
the method may include: passing the attempted operation to a
file system containing the storage medium.

According to an exemplary aspect of the present invention,
the method may include where wherein the allowing or deny-
ing the attempted operation further comprises: denying the
attempted operation when the attempted operation matches
one of the restricted operations.

According to an exemplary aspect of the present invention,
the method may further include modifying the attempted
operation when the attempted operation matches one of the
restricted operations, if the attempted operation can be modi-
fied from a restricted operation to an enabled operation.

According to an exemplary aspect of the present invention,
the method may include where the operation access privilege
is read-only for the logical storage medium.

According to an exemplary aspect of the present invention,
the method may include where the logical storage medium
may include logical portions and the operation access privi-
lege comprises multiple operation access privileges wherein
any number of the operation access privileges can be associ-
ated with each logical portion.

According to an exemplary aspect of the present invention,
the method may include where the operation access privileges
comprise at least one of the following: read, write, execute,
move, rename, append, change permissions, change
attributes, overwrite and/or overwrite zero length.

According to an exemplary aspect of the present invention,
the method may include where the intercepting may further
include intercepting file input/output attempted operations.

According to an exemplary aspect of the present invention,
the method may include where attempted operations may
include at least one of adding, deleting, converting and/or
modifying.

According to an exemplary aspect of the present invention,
the method may include where, the intercepting further com-
prises intercepting one or more logical device input/output
attempted operations.

US 8,234,477 B2

5

A method for applying an operation access privilege
between a computer and a storage medium, may include
associating an access privilege with at least a portion of the
storage medium; intercepting an attempted operation on at
least a portion; comparing the attempted operation to the
access privilege; and allowing or denying the attempted
operation, wherein allowing or denying occurs regardless of
an identity of a user attempting the attempted operation.

According to an exemplary aspect of the present invention,
the method may include applying an operation access privi-
lege to a logical storage medium, comprising: associating an
access privilege with at least a logical portion of the logical
storage medium; intercepting an attempted operation on at
least a logical portion of the logical storage medium, wherein
intercepting occurs regardless of an identity of a user attempt-
ing the attempted operation; comparing the attempted opera-
tion to the access privilege; and allowing, or denying the
attempted operation.

According to an exemplary aspect of the present invention,
a method for applying an operation access privilege between
a computer and a logical storage medium, may include, asso-
ciating an access privilege with at least a logical portion of the
logical storage medium; intercepting an attempted operation
on at least a logical portion; comparing the attempted opera-
tion to the access privilege; and allowing denying the
attempted operation, wherein allowing or denying occurs
regardless of an identity of a user attempting the attempted
operation.

A method of applying an operation access privilege to a
logical storage medium in a file system, comprising: provid-
ing an operation access privilege indicative of at least one of
an enabled operation and/or a restricted operation to be per-
formed on at least one portion of the logical storage medium;
associating operation access privilege with at least one por-
tion of the logical storage medium; intercepting in a trap layer
an attempted operation on at least one portion; and passing
attempted operation to the file system if the attempted opera-
tion matches the enabled operation.

According to an exemplary aspect of the present invention,
the method may include where the method may include modi-
fying the attempted operation if the attempted operation does
not match the enabled operation or the attempted operation
matches the restricted operation; and passing the modified
attempted operate to the file system.

According to an exemplary aspect of the present invention,
the method may include where the method may include,
further comprising denying the attempted operation at the
trap layer if the attempted operation matches the restricted
operation.

According to an exemplary aspect of the present invention,
the method may further include where denying the attempted
operation at the trap layer if the attempted operation does not
match the enabled operation.

According to an exemplary aspect of the present invention,
the method may include where a method for applying an
operation access privilege to a storage medium, comprising:
associating an access privilege with at least a portion of the
storage medium; intercepting an attempted operation on at
least a portion of the storage medium; determining whether
the attempted operation is an enabled operation or a restricted
operation; and allowing or denying the attempted operation
based on the determining whether the operation is an enabled
operation or a restricted operation.

According to an exemplary aspect of the present invention,
a method for applying operation access privilege to a logical
storage medium based on file type, may comprise: defining a
rule for a logical portion of the logical storage medium that

20

25

30

35

40

45

50

55

60

65

6

comprises a data identifier and an access privilege; intercept-
ing an attempted operation on the logical portion of the logi-
cal storage medium, wherein intercepting occurs regardless
of an identity of a user attempting the attempted operation;
comparing a data identifier associated with the attempted
operation to the data identifier of the rule, and if matching,
comparing the attempted operation to the access privilege;
and allowing, or denying the attempted operation based on the
comparing the attempted operation to the access privilege.

According to an exemplary aspect of the present invention,
a data identifier may include a file type. According to an
exemplary embodiment, the data identifier may include at
least one of the following: a data path, a data mask, and/or a
unique file identifier.

According to an exemplary aspect of the present invention,
a method for applying an operation access privilege to a
storage medium, may comprise: associating an access privi-
lege with at least a portion of the storage medium; intercept-
ing an attempted operation on at least a portion of the storage
medium based on a data identifier associated with the
attempted operation, wherein intercepting occurs regardless
of an identity of a user attempting the attempted operation;
comparing the attempted operation to the access privilege;
and allowing, or denying the attempted operation based on the
comparing the attempted operation to the access privilege.

According to an exemplary aspect of the present invention,
the method may further include allowing, or denying the
attempted operation based on a content of a logical file asso-
ciated with at least a portion of the storage medium.

According to an exemplary aspect of the present invention,
the method may further include allowing, or cancelling the
attempted operation based on the content of the file.

According to an exemplary aspect of the present invention,
allowing, or denying the attempted operation may include: (i)
allowing a create file operation to create a file associated with
at least a portion of the storage medium; (ii) evaluating the
content of the file; and/or (iii) allowing, or deleting the file
based on evaluating the file.

According to an exemplary aspect of the present invention,
associating the access privilege may include associating the
access privilege with at least a portion of the storage medium
based on a file attribute of a logical file associated with at least
a portion of the storage medium.

According to an exemplary aspect of the present invention,
enforcing a retention policy may include preventing at least a
portion of the storage medium in a retained state from being
modified while a retention period of at least a portion of the
storage medium is unexpired.

According to an exemplary aspect of the present invention,
enforcing a retention policy may be enforced for at least one
of: a file name, a file attribute, a file path, or a file content, of
a logical file associated with at least a portion of the storage
medium.

According to an exemplary aspect of the present invention,
enforcing a retention policy may include determining if at
least a portion of the storage medium is eligible to enter the
retained state based on a content of at least a portion of the
storage medium.

According to an exemplary aspect of the present invention,
determining may include determining if at least a portion of
the storage medium is eligible to enter the retained state based
on a content group associated with at least a portion of the
storage medium, the content group associated based on evalu-
ating at least a portion of the storage medium for pre-defined
content.

US 8,234,477 B2

7

According to an exemplary aspect of the present invention,
associating the access privilege may include holding the
retained state.

According to an exemplary aspect of the present invention,
holding the retained state may include at least one of. (i)
suspending expiration of a retained state portion of the stor-
age medium; (ii) suspending an unexpired retained state por-
tion of the storage medium from entering an expired retained
state; (iii) suspending clearing of a read only attribute of the
retained state portion of the storage medium by setting a
temporary attribute of the retained state portion of the storage
medium; and/or (iv) suspending deletion of an expired
retained state portion of the storage medium.

According to an exemplary aspect of the present invention,
enforcing a retention policy may include triggering one or
more background processes when at least a portion of the
storage medium enters a retained state.

According to an exemplary aspect of the present invention,
one or more background processes may include at least one
of: (i) creating metadata for the retention; (ii) identifying the
user retaining at least a portion of the storage medium; (iii)
storing user identification for the user retaining at least a
portion of the storage medium; (iv) identifying the retention
policy retaining at least a portion of the storage medium; (v)
storing the retention policy retaining at least a portion of the
storage medium; (vi) generating a digital signature of the
content of at least a portion of the storage medium; (vii)
generating a digital signature comprising a hash of the con-
tent of at least a portion of the storage medium; (viii) gener-
ating a digital signature of the content of at least one of a
default data stream associated with a file associated with at
least a portion of the storage medium or one or more alternate
data streams associated with the file associated with at least a
portion of the storage medium; (ix) storing the digital signa-
ture; (x) determining if any other policies apply; (xi) creating
atleast one of an alternate data stream or an extended attribute
to store the metadata; (xii) encrypting hash keys for the meta-
data; and/or (xiii) storing the hash keys.

According to an exemplary aspect of the present invention,
enforcing the retention policy may include triggering reten-
tion of at least a portion of the storage medium based on at
least one of: (i) the attempted operation; (ii) setting a read-
only attribute of the file; (iii) renaming the file to a file name;
(iv) renaming the file to a particular name; (v) resizing the file;
(vi) resizing the file to a particular size; (vii) creating an
extended attribute associated with the file; and/or (viii) cre-
ating an alternate data stream associated with the file.

According to an exemplary aspect of the present invention,
enforcing the retention policy may include enforcing an
archive policy including queuing at least a portion of the
storage medium to be copied to an alternate media, when at
least a portion of the storage medium is retained.

According to an exemplary aspect of the present invention,
the method may further include forcing a secure erasure for a
delete operation on at least a portion of the storage medium,
wherein secure erasure comprises at least one of overwriting
the content of at least a portion of the storage medium or
overwriting an alternate data stream associated with at least a
portion of the storage medium.

According to an exemplary aspect of the present invention,
allowing, or denying may include at least one of: (i) allowing
the operation on a directory if the directory is empty; and/or
(i1) denying the operation on the directory if the directory is
not empty.

According to an exemplary aspect of the present invention,
allowing, or denying the attempted operation may be based on
at least one of an application or a process attempting the

20

25

30

35

40

45

50

55

60

65

8

attempted operation. According to an exemplary aspect of the
present invention, allowing, or denying the attempted opera-
tion based on the application may include: (i) allowing the
attempted operation for at least one of a named or a registered
process; (ii) denying the attempted operation for at least one
of the named or the registered process; and/or (iii) allowing
the attempted operation for a privileged application, the privi-
leged application comprising an application operable to be
authenticated via a digital signature.

According to an exemplary aspect of the present invention,
the method may further include enforcing a policy based on
an application, the policy including at least one of: (i) enforc-
ing application based intercepting of the attempted operation;
(ii) disabling an operation option provided to the user; (iii)
expanding the scope of an operation based on the application;
and/or (iv) allowing, or denying the attempted operation
based on validating a child object of a parent object of an
attempted operation.

According to an exemplary aspect of the present invention,
the method may further include enforcing a secure time rou-
tine, the routine including at least one of: (i) using a secure
clock; (ii) maintaining a system clock comprising using the
secure clock; (iii) accounting for deviations based on inaccu-
racies of the secure clock; (iv) verifying operation of a secure
clock or authenticating the secure clock; (v) at least one of:
denying at least one attempted operation, preventing at least a
portion of the storage medium from being retained, or ren-
dering the storage medium read-only, if the secure clock can
not be at least one of: verified or authenticated; and/or (vi)
running the secure clock independent of a server.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will now be
described in conjunction with the drawings in which:

FIG. 1 is a simplified block diagram of an NT® operating
system architecture during a process of opening a file is
shown;

FIG. 2 is a simplified block diagram of an NT® operating
system architecture during a process of IRP processing is
shown;

FIG. 3 is a simplified block diagram of an operating system
according to the invention;

FIG. 4 is a simplified block diagram of a system for open-
ing a file such as that shown in FIG. 1 modified according to
the invention;

FIG. 5 is a simplified flow diagram of a method of storing
data in a storage medium forming part of a system such as that
of FIG. 1;

FIG. 6 is a simplified flow diagram of a method of provid-
ing software settable access privileges within Windows NT®;
and,

FIG. 7 is a simplified block diagram of the invention
wherein the file system layer includes means for performing
the functions of the trap layer.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, an exemplary simplified block dia-
gram of'a Windows NT® (NT) operating system architecture
during a process of opening a file is shown, though the present
embodiments may be applied to any other operating system.
In the exemplary embodiment, NT drivers are hidden from
end users by an NT protected subsystem 102 that implements
an exemplary NT programming interface. Devices may be
visible as named file objects controlled by the NT Input/

US 8,234,477 B2

9

Output (I0) Manager 110 to user-mode 104 programs,
including for example protected subsystems 102.

Exemplary NT protected subsystem 102, such as for
example the Win32® subsystem, may pass 1O requests to the
appropriate kernel-mode 106 driver through the 10 System
Services 108. A protected subsystem 102 may insulate its end
users (user mode 104) and applications from having to know
anything about kernel-mode 106 components, including NT
drivers 120, 122. In turn, the NT IO Manager 110 may insu-
late protected subsystems 102 from having to know anything
about machine-specific device configurations or about NT
driver 120, 122 implementations.

In an exemplary embodiment, the NT IO Manager’s (110)
layered approach also insulates most NT drivers 120, 122
from having to know anything about the following: whether
an 10 request originated in any particular protected sub-
system 102, such as Win32 or POSIX; whether a given pro-
tected subsystem 102 has particular kinds of user-mode 104
drivers; and, the form of any protected subsystem’s (102) IO
model and interface to drivers.

In an exemplary embodiment, the IO Manager 110 sup-
plies NT drivers 120, 122 with a single IO model, a set of
kernel-mode 106 support routines. These drivers 120, 122
may carry out 10 operations, and a consistent interface
between the originator of an IO request and the NT drivers
120, 122 that respond to it results. For example, file system
116 requests are a form of 10 request.

In an exemplary embodiment, a subsystem 102 and its
native applications access an NT driver’s device 122 or a file
on a mass-storage device 118 through file object handles
supplied by the NT IO Manager 110. A subsystem’s request
to open such a file object (for example, step 1) and to obtain
ahandle for IO to a device or a data file (for example, step 10)
is made by calling the NT IO System Services 108 to open a
named file, which has, for example, a subsystem-specific
alias (symbolic link) to the kernel-mode 106 name for the file
object (for example, step 2).

The NT IO Manager 110, which exports these System
Services, may then be responsible for locating or creating the
file object (for example, step 3) that represents the device or
data file and for locating the appropriate N'T driver(s) 120,
122.

In an exemplary embodiment, the system follows a process
described below in accordance with FIG. 1 for performing a
file open operation. The process comprises an exemplary
embodiment only, and any other additional implementations
may be used as well in accordance with the present embodi-
ments.

Beginning with exemplary step 1, the subsystem 102 may
call an NT IO System Service 108 to open a named file. In
exemplary step 2, the NT IO Manager 110 may call the Object
Manager 112 to look up the named file and to help it resolve
any symbolic links for the file object. It may also call the
Security Reference Monitor 114 to check that subsystem 102
has the correct access rights to open that file object.

In exemplary step 3, if the volume (e.g., an area of stored
data) is not yet mounted, the IO Manager may suspend the
open request, calling one or more NT file systems 116 until
one of them recognizes the file object as some thing it has
stored on one of the mass storage devices 118 the file system
uses. When the file system has mounted the volume, the 1O
Manager may resume the request.

In exemplary step 4, the IO Manager 110 may allocate
memory (e.g., a RAM cache) for and initialize an IO request
packet 124 (hereinafter IRP 124) for the open request. To NT
drivers 120, 122, an open request may be equivalent to a
“create” request.

20

25

30

35

40

45

50

55

60

65

10

In exemplary step 5, the IO Manager 110 may call the file
system driver 120, passing it the IRP 124.

In exemplary step 6, the file system driver 120 may access
its O stack location 126 in IRP 124 to determine what opera-
tion to carry out, checks parameters, determines if the
requested file is in cache memory, and, if not, set up the next
lower driver’s 10O stack location 126 in the IRP 124.

In an exemplary embodiment, both drivers 120, 122 may
process the IRP 124 and complete the requested 1O operation,
calling kernel-mode 106 support routines supplied by the 10
Manager 110 and by other NT components.

In exemplary step 7, the drivers 120, 122 may return the
IRP 124 to the IO Manager 110 with the 1O status block set in
the IRP 124 to indicate whether the requested operation suc-
ceeded and/or why it failed.

In exemplary step 8, the IO Manager 110 may get the 1O
status from IRP 124, so it can return status information
through the protected subsystem to the original caller.

In exemplary step 9, the IO Manager may free the com-
pleted IRP 124.

In exemplary step 10, the IO Manager may return a handle
for the file object to the subsystem 102 if the open operation
was successful. If there was an error, it may return appropriate
status information to subsystem 102.

In an exemplary embodiment, after exemplary subsystem
102 successfully opens a file object that represents a data file,
adevice, or a volume, the subsystem may use the returned file
object handle to request that device for 1O operations typi-
cally in the form of read, write, or device 1O control requests.
These operations may be carried out by calling the IO System
Services 108. The IO Manager 110 may route these requests
as IRPs 124 sent to appropriate NT drivers 120, 122.

Referring to FIG. 2, a simplified block diagram of an NT®
operating system architecture during a process of IRP 124
processing is shown, though the present embodiments may be
applied to any other operating system architecture and/or
operating system architecture processing system. In the
exemplary embodiment of FIG. 2, certain support routine
steps corresponding to the above noted steps of FIG. 1, are set
forth below.

As noted above, in exemplary step 1 an open file request is
issued. In addition, in exemplary step 1 (as shown in FIG. 2)
in response to an issued read/write request, the IO Manager
110 may call the file system driver (FSD) 120 with the IRP
124 it has allocated for the subsystem’s read/write request.
The FSD 120 may access its 1O stack location 126 in the IRP
124 to determine what operation it should carry out. In an
exemplary embodiment, exemplary steps 2 and 3 may be
carried out as above described.

Exemplary step 4 comprises a support routine for alloca-
tion of IRP 124. In an exemplary embodiment, FSD 120 may
sometimes break the originating request into smaller requests
by calling an IO support routine, one or more times, to allo-
cate IRPs 124, which may be returned to the FSD 120, for
example, with zero-filled 10 stack location(s) 126 for lower-
level driver(s). At its discretion, FSD 120 may reuse the
original IRP 124, rather than allocating additional IRPs 124
as shown in FIG. 2, by setting up the next-lower driver’s 10
allocation 126 in the original IRP 124 and passing it on to
lower drivers.

Exemplary step 5Sa may comprise a series of support rou-
tines. In an exemplary NT operating system, included, for
example, are subroutines loSetCompletionRoutine (e.g., rou-
tine that registers an loCompletion routine, which will be
called when the next-lower-level driver has completed the
requested operation for the given IRP), loGetNextirpStack-
Location (e.g., routine that gives a higher level driver access

US 8,234,477 B2

11

to the next-lower driver’s 1/O stack location in an IRP so the
caller can set it up for the lower driver) and IoCallDriver
(routine that sends an IRP to the driver associated with a
specified device object). Exemplary step 5b may comprise a
series of additional support routines. These routines may
include IoGetCurrentlrpStackl.ocation (e.g., routine that
returns a pointer to the caller’s stack location in the given
IRP), IoMarklIrpPending (e.g., routine that marks the speci-
fied IRP, indicating that a driver’s dispatch routine subse-
quently returned a status pending because further processing
is required by other driver routines), and loStartPacket (e.g.,
routine that calls the driver’s Startlo routine with the given
IRP or inserts the IRP into the device queue associated with
the given device object if the device is already busy).

For example, for each driver-allocated IRP 124, the FSD
120 may call an IO support routine to register an FSD-sup-
plied completion routine so the driver is able to determine
whether a lower driver satisfied the request and free each
driver allocated IRP 124 when lower drivers have completed
it. The 10 Manager may call the FSD-supplied completion
routine whether each driver-allocated IRP 124 is completed
successfully, with an error status, or cancelled. A higher-level
NT driver is responsible for freeing any IRP 124 it allocates
and may set up, on its own behalf, for lower-level drivers. The
10 Manager may free the IRPs 124 that it allocates after all
NT drivers have completed them. Next, the FSD 120 may call
an 1O support routine to access the next lower-level driver’s
10 stack location in its FSD-allocated IRP 124 in order to set
up the request for the next-lower driver, which may happen to
be the lowest-level driver in FIG. 2. The FSD 120 may then
call an IO support routine to pass that IRP 124 on to the next
driver.

When it is called with the IRP 124, the physical device
driver may check its 1O stack location to determine what
operation (indicated by the IRP MJ XXX 222 function code)
it should carry out on the target device, which may be repre-
sented by the device object in its 10 stack location 126 and
passed with the IRP 124 to the driver. This driver can assume
that the IO Manager 110 has routed the IRP 124 to an entry
point that the driver defined for the IRP-MJ XXX 222 opera-
tion (here, for example, IRP MJ READ or IRP MJ WRITE)
and that the higher-level driver has checked the validity of
other parameters for the request.

If there were no higher-level driver(s), such a device driver
may then check whether the input parameters for an IRP MJ
XXX 222 operation are valid. If they are, a device driver 122
may usually call 1O support routines to tell the IO Manager
that a device operation is pending on the IRP 124 and to either
queue or pass the IRP 124 on to another driver-supplied
routine that accesses the target device in the form of a physical
or logical device such as a disk or a partition on a disk. In
addition to the major code IRP MJ XXX 222, minor code
IRP_MN_XXX 224, arguments 226, PtrDeviceObject (e.g.,
pointer to the device object) 228, and PtrFileObject (e.g.,
pointer to the file object) 230 may be provided in the IO stack
location 126 of a given IRP 124.

Exemplary step 6 may comprise a series of support routines
for starting operation on a device and return. Here, for
example, the IO Manager 110 may determine whether the
device driver is already busy processing another IRP 124 for
an exemplary target device, queues the IRP 124 if it is, and
returns. Otherwise, for example, the IO Manager 110 may
route the IRP 124 to a driver-supplied routine that starts the IO
operation on its device.

Exemplary step 7a may comprise a series of support rou-
tines for a service interrupt. In an exemplary embodiment,
when the device interrupts, in an exemplary embodiment the

20

25

30

35

40

45

50

55

60

65

12

driver’s interrupt service routine (ISR) does only as much
work as is necessary to stop the device from interrupting and
to save necessary context about the operation. The ISR may
then call an IO support routine with the IRP 124 to queue a
driver-supplied DPC routine to complete the requested opera-
tion at a lower hardware priority than the ISR.

Exemplary step 7b may comprise a series of support rou-
tines for completing an interrupt-driven 1O operation. For
example, when the driver’s DPC gets control, it may use the
context as passed in the ISRs call to IoRequestDpc to com-
plete the 10 operation. The DPC may call a support routine to
dequeue the next IRP 124 when present and to pass that IRP
124 on to the driver-supplied routine that starts IO operations
on the device. The DPC may then set status about the just
completed operation in the IRPs 1O status block and return it
to the IO Manager 110 with loCompleteRequest.

Exemplary step 7b may comprise a series of support rou-
tines for calling a file system with a completed (FSD-allo-
cated) IRP. For example, in an exemplary embodiment the IO
Manager 110 may zero the lowest-level driver’s 10 stack
location in the IRP 124 and call the file system’s registered
completion routine with the FSD-allocated IRP 124. This
completion routine may check the 1O status block to deter-
mine whether to retry the request or to update any internal
state maintained about the original request and to free its
driver-allocated IRP 124. The file system may often collect
status information for all driver-allocated IRPs 124 it sends to
lower-level drivers in order to set 1O status and complete the
original IRP 124. In an exemplary embodiment, when it has
completed the original IRP 124, the IO Manager 110 may
return N'T status, the subsystem’s (102) native function, to the
original requestor of the 1O operation.

In an exemplary embodiment, FIG. 2 also may include (as
shown) two exemplary 1O stack locations 126 in the original
IRP 124 because it may include two NT drivers, a file system
driver 120 and a mass-storage device driver 122. The 10
Manager 110 may give each driver 120, 122 in a chain of
layered NT drivers an IO stack 126 location of its own in
every IRP 124 that it sets up. The driver-allocated IRPs 124 do
not necessarily have a stack location 126 for the FSD 120 that
created them. Any higher-level driver that allocates IRPs 124
for lower-level drivers may also determine how many 1O
stack locations 126 the new IRPs 124 should have, according,
for example, to the StackSize value of the next-lower driver’s
device object.

In an exemplary embodiment, an NT file system driver 120
accesses the file object through its 1O stack location 126 in
IRPs 124. Other NT drivers may usually ignore the file object.

The set of IRP 124 major and minor function codes that a
particular NT driver handles may sometimes be device-type-
specific. However, NT device and intermediate drivers may
usually handle the following set of basic requests: IRP MJ
CREATE—opens the target device object, indicating that it is
present and available for IO operations; IRP MJ READ—
transfers data from the device; IRP MJ WRITE—transfers
data to the device; IRP MJ DEVICE CONTROIL—sets up or
resets the device according to a system-defined, device, spe-
cific 10 control code; and IRP MJ CLOSE—about closing the
target device object.

In general, the IO Manager 110 may send IRPs 124 with at
least two IO stack locations 126 to device drivers of mass-
storage devices 122 because an NT file system may be layered
over NT drivers for mass-storage devices 118. The IO Man-
ager 110 may send IRPs 124 with a single stack location to
any physical device driver that has no driver layered above it.

US 8,234,477 B2

13

Referring to FIG. 3, a block diagram of an exemplary
operating system is shown, which may be any type of oper-
ating system, including without limitation the above noted
embodiments.

The block diagram presents a simplified view of operating
system functionality according to certain embodiments of the
present invention. An exemplary application layer 302 for
supporting application execution may communicate with an
exemplary input/output layer 306 of the computer. The exem-
plary input/output layer 306 may include an exemplary dis-
play 308 and an exemplary file system layer 310.

The exemplary application layer 302 may communicate
with exemplary file system layer 310 for performing read
operations and write operations with storage media. Disposed
between the application layer and the file system layer may be
atrap layer 304, which may also be referred to as a filter layer.

In an exemplary embodiment, each file system access
request that is transmitted from the application layer 302 to
the file system layer 310 may be intercepted by the trap layer
304. In the trap layer 304, restrictions relating to access privi-
leges may be implemented.

For example, in an exemplary embodiment, some requests
are blocked and error messages may be returned to the appli-
cation layer 302. Other requests may be modified and the
modified requests may be passed onto the file system 310.

When a data store is read only, for example, a request to
open a file for read-write access may be modified to an open
file for read-only access; a request to delete a file may be
blocked, and an error message may be returned.

In an exemplary embodiment, the use of exemplary trap
layer 304 may be applicable when the certain embodiments
are implemented within an existing operating system such as
Windows NT®. In alternative embodiments, for example an
operating system supporting restricted write access may be
designed and restrictions relating to access privileges may be
implemented within the file system layer 310.

Referring to FIG. 4, a simplified block diagram of opening
a file within Windows NT® according to certain embodi-
ments of the present invention is shown, though the concepts
provided in the figure may be applied to any operating sys-
tems or related environments, and are in no way limited
thereto.

In an exemplary embodiment, the diagram may be based
on the diagram of FIG. 1. For example, in an exemplary
embodiment, an exemplary trap layer filter 402 (illustrated by
a thick black line) may include any of the features and func-
tions above described in relation thereto, including prevent-
ing one or more file system operations from passing from an
exemplary application layer 302 to an exemplary file system
layer 310.

Accordingly, in an exemplary embodiment a data store
device, such as mass-storage device 118 for example, may
operate as a read/write device with a single device driver. The
trap layer 304 may prevent write operations or, alternatively,
other predetermined operations from being performed on a
specific data store. The trap layer 304 may achieve this, for
example, by blocking some requests and by modifying other
requests. In this way, some operations may be prevented
without requiring modifications to existing applications.
Thus, in an exemplary embodiment one data store may be
read only while another is read/write. Unlike certain known
implementations, an application requesting a write operation
to a data store that is read-only, may receive an accurate and
appropriate error message. In an exemplary embodiment,
there is no data lost by the device driver and, in fact, the device
driver may be freed of the trouble of dealing with file system
commands which cannot be completed.

20

25

30

35

40

45

50

55

60

65

14

Also, the use of the trap layer 304 may allow for imple-
mentation of more complicated file access privileges based on
data stored within each individual storage medium. For
example, a storage medium may indicate read-write access
but may not support delete operations. Device drivers may
perform low level commands such as read and write. For
delete, for example, which is a write operation, the device
driver may perform write operations to obfuscate or overwrite
a file. As is evident, the device driver may support delete
operations, as do any read/write data store, for example. How-
ever, by indicating to the trap layer 304 that delete operations
are not supported, for example, all delete requests passed
from the application layer 302 for the specific data store may
be intercepted by the trap layer 304 and an error message may
be returned to the application layer 302. Here, for example, no
delete operation for a file is passed to the file system layer 310
and therefore, the device driver does not perform the write
operations for obfuscating or overwriting the file because
none has been received. It is evident that preventing file
deletion may be advantageous for protecting archived data
and data histories.

Another operation which may be advantageously restricted
is overwriting of files. When a request is made to overwrite a
file, typically the data within the file may be overwritten.
Overwriting of file data may be a simple work around to
perform a file delete when that operation is blocked. Alterna-
tively in some devices, the data to overwrite may be written to
an unused portion of a storage medium and an address of the
file data within a file allocation table may be changed accord-
ingly. The storage locations of the old file data may then be
considered free. Preventing data overwrite may be performed
according to certain embodiments of the present invention by
modifying requests or blocking requests as necessary. Fur-
ther, by trapping requests to overwrite file data according to
certain embodiments of the present invention, a user friendly
error message may be possible.

According to an exemplary embodiment, when an appli-
cation provides a request to overwrite a file, an error message
indicating that overwrite is not permitted and that a file name
is needed to save the data, may be provided. The trap layer
304, upon receiving the file name from the error message,
may modify the request in accordance therewith and in accor-
dance with permitted operations, and may pass the modified
request to the file system layer 310. Accordingly, data integ-
rity may be preserved with minimal inconvenience to users of
the system.

It may also be useful to restrict access to file access per-
missions. Permissions may be global across a storage
medium and altering of the permissions may not be desirable.
Still, many operating systems provide for file and storage
medium related access privileges. These may be modifiable,
for example, at any time. Since privileges are generally static,
there are advantages to setting up privileges for a storage
medium such that during normal operation and with normal
file system operations, the privileges may be static. Prefer-
ably, there may be at least a way to modify the global privi-
leges in case it is desirable to do so. Preventing alteration of
privileges may prevent, for example, individuals having
access to files from modifying access privileges in any way.

In an exemplary embodiment, another operation that is
usefully restricted is overwriting of zero length files. Some
operations within some applications may create a zero length
file and then overwrite it, thus preventing overwriting of zero
length files may directly affect those applications. An
example of such an application and operation is the “save as”
command in Microsoft Word®. Thus, preventing overwriting

US 8,234,477 B2

15

of zero length files may effectively prevent “save as” from
functioning on the associated medium.

Similarly, renaming a file may be useful for obfuscating
data. Preventing renaming of files may prevent hiding exist-
ing files or making them more difficultto locate. For example,
changing a client’s information file name from “Client 101
Information” to “To Do Feb. 18” may make the file hard to
locate. Thus, rename is an operation that may be desirable to
restrict. Reasons for restricting the other listed operations are
evident. Further, restricting other operations may also be
advantageous and the present application may not be limited
to these operations.

Above mentioned operations which are advantageously
restricted may include overwriting files, changing file access
permissions and medium access privileges, renaming files,
formatting a medium and the like. For example, a medium
that does not allow any of the above mentioned operations
may provide a complete archival history of the medium’s
content and prevents alteration or deletion of the data. Such a
medium may be very useful for backing up office files or
electronic mail.

Referring to FIG. 5, a flow diagram of an exemplary
method of storing data in a storage medium, in accordance
with certain embodiments, for forming part of a system such
as that of FIG. 3 is shown. An application in execution on the
system may seek to store a data file on a storage medium
within the file system layer 310 of the system. in exemplary
step 502, a request and data for storage within the file may be
transmitted from the application layer 302 to the file system
layer 310. The request may include an operation and data
relating to a destination storage medium on which to store the
data. In exemplary step 504, the trap layer 304 may intercept
the request and the data and determine whether the storage
medium selected supports the operation.

In exemplary step 506, when the storage medium supports
the operation, for example, in step 512 the request and the
data may be passed on to the file system layer 310. When
necessary, the request may be modified (exemplary steps 508,
514) prior to provision to the file system layer 310 (exemplary
step 512). In the file system layer 310, the operation may be
conducted according to normal file system layer 310 proce-
dures (exemplary step 512). Ifin step 506 the storage medium
does not support the operation in its original or a modified
form (exemplary steps 508, 514), the trap layer 304 may
return an indication of'this to the application layer 302 (exem-
plary step 510). The operation and the data may not be passed
onto the file system layer 310. This may provide additional
access privilege functionality.

Referring to FIG. 6, a simplified flow diagram of an exem-
plary method of providing software settable access privileges
within Windows NT® is shown. In exemplary step 602, a
storage medium is mounted within a computer system. In
exemplary step 604, the storage medium may have stored
thereon data relating to access privileges for the storage
medium. In exemplary step 606, upon mounting the storage
medium, data relating to, for example, physical limitations of
the read/write device may be loaded into the device driver for
that device within the file system layer 310. The limitations
are recognized by the system software. In exemplary step
608, upon mounting the storage medium, the data relating to
access privileges for the storage medium may be loaded into
the trap layer 304. The trap layer 304 may limit operations
performed on the storage medium to those supported by the
read/write device by limiting the requests passed onto the file
system layer 310 or, when the trap layer 304 forms part of the
file system layer 310, by filtering and/or modifying the
requests. The data relating to access privileges for the storage

20

25

30

35

40

45

50

55

60

65

16

medium may be used to limit those requests provided to the
file system layer 310. In exemplary step 610, the methods of
FIG. 5 may be repeated.

When the storage medium is a data store for archiving
purposes, there are evident advantages to treating the storage
medium as a read-only storage medium. For example, once
the data store is full, setting it to read-only allows its use
without risking tampering or accidental modification. There-
fore, media specific access privileges are advantageous.

Referring to FIG. 7, a simplified block diagram of exem-
plary embodiment of the present invention wherein the file
system layer 310 includes means for performing the functions
of'the trap layer is shown. Such an embodiment, operates in a
similar fashion to those described above. The file system
receives all file access requests and compares them to those
that are not permitted. When an access command is not per-
mitted on an indicated storage medium, an error message may
be returned to the application layer 302. When an access
command is permitted, it may be performed on the appropri-
ate storage medium. The access command may be that
requested or, alternatively, a modified form of the requested
command resulting in a supported operation.

The term logical storage medium is used herein and in the
claim that follow to designate either a physical storage
medium or a portion of physical storage medium that is
treated by the operating system as a separate storage medium.
Thus, a partitioned hard disk with two partitions consists of
one physical storage medium and two logical storage media.

According to an exemplary embodiment, a trap layer may
be provided, which may intercept requests, and then may do
something with the request. For example, in an exemplary
embodiment, if the request is deemed permissible, it may be
allowed. On the other hand, if the request is deemed not
allowed, then the request may be denied. According to
another exemplary embodiment, in the event that the request
is not allowed, if possible, it may be modified and then per-
haps allowed in an exemplary embodiment, as modified. In an
exemplary embodiment, the trap layer may be set to intercept
requests based on a predefined policy or setting.

According to an exemplary embodiment, the trap layer
may be a transparent trap layer. In an exemplary embodiment,
the trap layer may intercept requests transparently to the user.
In another exemplary embodiment, the trap layer may inter-
cept requests transparently to a computer application invok-
ing the requests. According to another exemplary embodi-
ment, the trap layer may intercept requests based on a
predefined policy and/or setting.

According to another exemplary embodiment, the comput-
ing environment may be any of various well known comput-
ing environments. For example, the computing environment
may include a WINDOWS® environment, in an exemplary
embodiment. In another exemplary embodiment, the comput-
ing environment may include, e.g., but not limited to, any
computer operating environment including, e.g., but not lim-
ited to, a real file system environment, an advanced file sys-
tem, an HPFS file system, an NTFS file system, a UNIX file
system, a Solaris file system, an Apple file system, an AIX file
system, an extended file system on Unix, etc.

A file lifecycle may include an entire existence of a file
from the moment of creation through transitions such as
moves, renames, retention, preservation or archiving, etc., up
until destruction. File operations may include, e.g., but not be
limited to, creating; storing; moving; protecting; preserving;
archiving; retaining logically or physically, in for example
write-once-read-many (WORM) form; deleting; overwriting;
replicating; preventing the creation of a particular type of file
(for example, an MP3 file) in, for example, a directory; etc.

US 8,234,477 B2

17

According to an exemplary embodiment, the trap layer
may extend the whole concept of data protection and data
preservation into the logical space rather than the traditional
physical space. In an exemplary embodiment, the trap layer
may ensure that information that is needed will remain acces-
sible throughout its existence. The traditional concepts of
archiving and preserving information based on the use of
physical WORM Write-Once-Read-Many devices and media
realistically is unreasonable. Technology continues to change
and given the continuous evolution, it is impractical to
assume that the same old hardware 50 years in the future will
be able to be connected to newer operating systems and newer
servers and that data will remain accessible. In reality, hard-
ware will become obsolete and that in no way minimizes the
need to preserve valuable information. In real life, each day
valuable information and property such as wallets, keys, cell
phones and PDAs is moved. The fact remains that people may
continue to carry valuable information and/or property as
long as the information and/or property is needed. The fact
that people carry wallets does not dictate that people will
continue to use the same wallets forever, or that people will
maintain the same contents. What may be true is that as long
as the specific contents of a wallet are important, the contents
will be maintained and transferred to newer wallets.

A concept of data preservation and protection in exemplary
embodiments revolve around providing the protection inde-
pendent of the physical storage enabling the infrastructure to
evolve while preserving and securing the data. According to
an exemplary embodiment, a logical WORM may be created
that may allow the user to utilize the storage resources of
choice, for example, a spinning disk, to achieve and meet
compliance and legislated data preservation and retention
obligations on any storage technology that meets the business
needs and requirements.

According to an exemplary embodiment, the trap layer
may enforce various policies. According to a first exemplary
embodiment, the creation of a new file may be allowed. The
file may be created in an unrestricted mode, allowing any and
all aspects of the file to be modified such as size, name, data
attributes and times. Once the file is closed the trap layer may
automatically enforce the restrictions. In other words, the trap
layer may allow Create. In the exemplary embodiment, the
trap layer may use the privilege to allow the file to be created.
At this point the file may be opened in a read/write mode
allowing all other operations to be allowed. According to the
exemplary embodiment, once the file is closed, the next
operation may be to open an existing file and not a creation
operation. In the exemplary embodiment, at this point the trap
layer may evaluate the operation against the other access
privileges, such as, e.g., but not limited to, overwrite, append,
change attributes, change permissions, overwrite zero length.
Ifthe operation is not allowed the trap layer may simply deny
it.

According to a second exemplary embodiment, the cre-
ation of a new file may be permitted. The file may be created
in an unrestricted mode, allowing any and/or all aspects of the
file to be modified such as size, name, data attributes and
times. Once the file is closed, in an exemplary embodiment
the restrictions may be automatically enforced uncondition-
ally, rendering the file effectively archived upon close opera-
tion.

According to a third exemplary embodiment, the creation
of'a new file may be permitted. Here, the file may be created
in an unrestricted mode, allowing any and all aspects of the
file to be modified, such as size, name, data attributes and
times. The file may remain in an unrestricted mode until an
predefined event occurs, upon which the restrictions are

20

25

30

35

40

45

50

55

60

65

18

changed to deny modifications and in an exemplary embodi-
ment, allow only read operations. According to an exemplary
embodiment, this may be implemented by opening a file. In
an exemplary embodiment, then a change, such as changing
the file attribute to read-only, may trigger the change in the
access privilege. The actual evaluation of the access privilege
may be evaluated on the file open operation. In an exemplary
embodiment, the intentions of the user and/or application
may have to be declared at the time of the open operation.

The open file intentions may include whether the file is
opened for read-only or for read-write or opened to change
attributes or opened for changing permissions, or opened for
append or opened for changing file times (creation, last modi-
fication or last access times) or opened for rename or opened
for move operations.

The open operation maybe a part of the access privilege
evaluation process.

According to an exemplary embodiment, the trap layer
may enforce policies and/or restrictions on a file based on the
content of the file. In an exemplary embodiment, the content
of the file may determine if the file is eligible to be created.
According to an exemplary embodiment, content based poli-
cies and/or restrictions may apply to the actual file contents,
the file name and the file attributes. In an exemplary embodi-
ment, specific content may make a file eligible to be created.
According to an exemplary embodiment, specific content
may make a file ineligible to be created.

According to an exemplary embodiment, the trap layer
may associate a file with a content group based on the content
of the file. In an exemplary embodiment, the trap layer may
determine if a file is eligible to be created based on the content
group of the file. In an exemplary embodiment, predefined
content, such as, e.g., but not limited to strings or specific byte
sequences may determine if a file is a member of a specific
content group.

According to an exemplary embodiment, evaluation of the
content of a file may only be possible once a file is closed and
the contents of the file created. In an exemplary embodiment,
once a file is closed and the content of the file created, the trap
layer may enumerate the file contents, and determine the
content group of the file. According to an exemplary embodi-
ment, if a created file is determined to have been ineligible to
be created, such as, e.g., but not limited to, the file violates a
file creation policy, the trap layer may automatically delete
the file. In an exemplary embodiment, instead of deleting
ineligible files, the trap layer may trigger other actions, such
as, e.g., but not limited to, moving the file to an alternate
location.

According to an exemplary embodiment, the trap layer
may determine if any number of operations are eligible to be
executed on a file based on the content of the file. In an
exemplary embodiment, the trap layer may prevent files con-
taining data such as, e.g., but not limited, social security
numbers, credit cards and/or other private personal informa-
tion, from being deleted, accessed or copied. According to an
exemplary embodiment, the trap layer may determine if a file
is harmful based on the content of a file. In an exemplary
embodiment, the trap layer may determine if the file is a
computer virus, malware, adware, spyware, computer worm,
etc. According to an exemplary embodiment, a content group
may comprise types of harmful and/or malicious files. In an
exemplary embodiment, the trap layer may prevent harmful
files from being created. According to an exemplary embodi-
ment, the trap layer may allow a harmful file to be created to
evaluate the contents of the file, and then delete the file if the
file is determined to be harmful.

US 8,234,477 B2

19

According to an exemplary embodiment, the trap layer
may enforce policies and restrictions based on the attributes
of'the file. In an exemplary embodiment, the attributes ofa file
may determine whether the file is eligible to be created or not.
According to an exemplary embodiment, policies and/or
restrictions may apply to the actual file name and file
attributes. Example policies and/or restrictions include: (i)
determining if the file has a specific attribute, such as a file
name that would make the file be eligible to be created; and/or
(i1) determining if the file has a specific attribute, such as a file
name, which would exclude the file from being created.

In an exemplary embodiment, the trap layer may enforce
policies and/or restrictions based on associating a file with a
file group, such as, e.g., but not limited to, predefined naming
conventions and masks such as strings or wildcard sequence
that would determine whether a file is a member of a specific
file group or not. According to an exemplary embodiment, the
trap layer may determine if any number of operations are
eligible to be executed on a file based on the file attributes of
the file. According to an exemplary embodiment, the trap
layer may determine if a file is eligible to be created based on
the file group associated with the file. In an exemplary
embodiment, if the file group is allowed then the file may be
created. If some of the evaluation of the eligibility of the file
creation can only be determined upon completion of the file
creation operation, the trap layer may automatically enumer-
ate the file name and other applicable attributes, determine
file group association after completion of the file creation
operation, and trigger other actions if necessary, such as, e.g.,
but not limited to, automatically deleting or moving the file.

According to an exemplary embodiment, the policies for
access privilege may also enforce retention enforcing restric-
tions that prohibit modifications on retained files. In an exem-
plary embodiment, these restrictions may encompass prohib-
iting all modifications or in some cases, allowing some
operations that do not affect the integrity of the user data.
According to an exemplary embodiment, the trap layer may
allow file security permissions to be modified for retained
files since file security permissions only affect who can access
the file and do not change the contents of the file.

According to an exemplary embodiment, retained files
may have certain restrictions that cannot be changed such as
rename, move, overwrite, overwrite zero length and delete
that will always be denied on a retained file.

According to an exemplary embodiment, retention restric-
tions may apply to the actual file contents and may apply to
the file name, attributes and file path as well. In an exemplary
embodiment, once a file is retained, the file should remain in
the same path. According to an exemplary embodiment,
allowing a retained file to be renamed or moved to another
directory, or even allowing a directory in the path of the
retained file to be moved or renamed, will in essence render
the file inaccessible by any referencing application or data-
base.

According to an exemplary embodiment, retained files
may be assigned an expiry time that may be derived and/or
derived from adding a time period to the last modification
date and time of the file.

According to an exemplary embodiment, a file may be
retained for ever and have no expiry time assigned. The expiry
time for a file may be extended. According to an exemplary
embodiment, a file may be retained for an indefinite time
period allowing an expiry time to be assigned in the future.

According to an exemplary embodiment, once a file is
retained its contents “user data” may never be modifiable. An
expired file may be either deleted or have the expiry time
extended.

20

25

30

35

40

45

50

55

60

65

20

According to an exemplary embodiment, retention expiry
time may be assigned directly by the user using private
IOCTLs or an application. According to an exemplary
embodiment, retention expiry may be derived by setting the
last access time and then triggering the file to be in a retained
state.

According to an exemplary embodiment, the retention trig-
ger may be an event such as changing the state of the read-
only attribute, but is not limited to only changing this specific
attribute. According to an exemplary embodiment, the reten-
tion trigger may be a rename operation. In an exemplary
embodiment, an attempt to rename a file to a certain file name
identified in the policy may trigger the file to become
retained. According to an exemplary embodiment, if the
retention is enforced by setting the read-only attribute, then
the attribute may be set. In another embodiment, the retention
may be set by other means such as creating an extended
attribute or an alternate data stream.

An example of why such an operation may be important is
that under certain file sharing protocols and applications there
may be no clear mapping of the read-only file attribute into
other operating systems such as MacOS, UNIX and LINUX.
Setting the read-only attribute in windows may be mapped to
the UNIX user be a chmod operation rendering a file practi-
cally read-only such as 555 or “r-xr-xr-x”. The problem may
get compounded when the user attempts to set the read-only
attribute on a file that resides on Windows OS from UNIX or
LINX or MacOS. According to an exemplary embodiment,
the user can perform such an operation by using the chmod
operation to set the file permissions to 555. In an exemplary
embodiment, under certain circumstances the behavior of
setting the read-only attribute from Windows may be mapped
by Windows services for UNIX to reflect that the file has 555
permissions. According to an exemplary embodiment, the
mapping may prevent using the read-only attribute to trigger
retention from a client running a variant of UNIX or one were
the read-only attribute is not natively defined.

In an exemplary embodiment, a trigger may detect an
attempt to change another file attribute, such as, e.g., but not
limited to, file name, would be the actual trigger. According to
an exemplary embodiment, the attempt to change another file
attribute may not actually change the file attribute. In an
exemplary embodiment, for example, e.g., a rule could be
defined that any attempt to rename a file to “KOM_RE-
TAINED” would be the trigger to retain the file and would not
result in the file actually getting renamed. According to an
exemplary embodiment, a policy may be defined where files
that are renamed to a certain naming convention would be
retained. In an exemplary embodiment, another exemplary
retention trigger may be an operation to change the file size to
non-zero.

According to an exemplary embodiment, the user can
define a number of triggers including the permissions or who
the owner of the file is. In an exemplary embodiment, the
retention policy can include exclusion rules that would
exclude files that meet that criteria from being retained. These
rules may include such parameters as data identifiers like
path, name, mask, extension, size, attribute, permissions, file
creation time and file modification time. According to an
exemplary embodiment, the retention policy may include
inclusion rules that would include files that meet that criteria
to be retained. These rules include such parameters as data
identifiers like path, name, mask, extension, size, attribute,
permissions, file creation time and file modification time.

According to an exemplary embodiment, in the last access
time may be used to set the file retention expiry. In an exem-
plary embodiment, if the last access time is zero then the file

US 8,234,477 B2

21

may be retained for ever and it will never expire. The user/
application may not be able to change the last access time.
According to an exemplary embodiment, if the last access
time is equal to the last file modification time then the file may
be retained indefinitely until it is set to have an expiry time. To
set the expiry time on a file that is retained indefinitely, the last
access time may be modified to a date and time that is greater
than the last modification time. Once the expiry time is
reached then the file may be expired and may be deleted. In
another exemplary embodiment, if the last access time is set
to a value greater than the last modification date, then the last
access time may be used as the expiry time of the retention.

According to an exemplary embodiment, an independent
file expiry time may be used to set the file retention expiry. In
an exemplary embodiment, if the expiry time is set to
OxFFFFFFFFFFFFF then the file may be retained for ever and
may will never expire. The user/application may not be able to
change the expiry time. According to an exemplary embodi-
ment, if the expiry time is equal to 00:00:00 Thurs. Jan. 1,
1970, or some other pre-defined time, then the file may be
retained indefinitely. A file that is retained indefinitely may be
assigned an expiry time. Assigning an expiry time may be the
only way to expire an indefinitely retained file.

According to an exemplary embodiment, an indefinitely
retained file may be expired in a number of ways. In an
exemplary embodiment, to set the expiry time on a file that is
retained indefinitely, the expiry may modified to a date and
time that is greater than zero or it’s equivalent, which may be
00:00:00 Thurs. Jan. 1, 1970. Once the expiry time is reached
then the file may be expired and may be deleted or the expiry
time may be extended. According to another exemplary
embodiment, the expiry time may be set to the current time,
meaning that the file will be rendered expired as of the current
time, literally rendering the file expired. If the retention
expiry time is set to a value greater than zero or it’s equivalent
00:00:00 Thurs. Jan. 1, 1970 then that may be used as the
expiry time of the retention.

According to an exemplary embodiment, the trap layer
may initiate and trigger other background operations when a
file is retained or when a specific trigger is triggered. In an
exemplary embodiment, these actions may include an archive
policy, such as, e.g., but not limited to, queuing the file to
create additional copies on an alternate media. In an exem-
plary embodiment, the trap layer retention policy may use an
attempt to access a file to trigger the evaluation of other
policies, such as an archive policy. According to an exemplary
embodiment, if additional triggered actions such as the
archive policy are defined, then the file information may be
put on a queue to allow other processes to determine what to
do with the file. In an exemplary embodiment, in the case of
the archive policy, the trap layer may evaluate the archive
policy against the file information and determine whether
additional copies of the file should be created.

According to an exemplary embodiment, the retention
policy expiry may be suspended indefinitely in the event of
litigation to prevent valuable files directories and documents
from being accidentally destroyed while the litigation is still
on going. According to an exemplary embodiment, the sus-
pension may be a legal hold. In an exemplary embodiment,
the legal hold may prohibit and/or inhibit the deletion of files
even if their retention period is expired.

According to an exemplary embodiment, the trap layer
may use a file attribute, such as, e.g., but not limited to, the
Temporary Attribute to denote the legal hold status of a
retained file. In an exemplary embodiment, a retained file may
be put on legal hold by setting the Temporary Attribute on the
target file. According to an exemplary embodiment, the legal

20

25

30

35

40

45

50

55

60

65

22

hold may prevent the file from being eligible for deletion by
preventing the clearing of the read-only attribute until the
Temporary Attribute is cleared first. In an exemplary embodi-
ment, the legal hold may suspend the processing of the reten-
tion expiry, meaning that a file whose retention is expired
cannot have the read-only attribute cleared until the legal hold
is removed, which may require clearing the temporary
attribute first.

According to an exemplary embodiment, the basic concept
of'the legal hold may expand the retention policy to incorpo-
rate restrictions as to prohibit or inhibit the changing of the
retention state of a file if there is another attribute or state
already set. In an exemplary embodiment, the trap layer may
prohibit changing the read-only attribute of a file in the event
the temporary attribute is set. In other words, the trap layer
may not clear or set the read-only attribute if the temporary
attribute is set.

According to the exemplary embodiment, a file that is not
retained may not get retained if the legal hold state applies. In
an exemplary embodiment, if the temporary attribute is set
and the read-only attribute is not set, then there may be no way
that the read-only attribute can get set unless the temporary
attribute is cleared first. According to an exemplary embodi-
ment, the legal hold may prohibit a file from becoming
retained no matter what other triggers are defined.

According to an exemplary embodiment, a file that is in the
retained state may not become un-retained if the legal hold
state applies. In an exemplary embodiment, if the temporary
attribute is set and the read-only attribute is set, then there
may be no way that the read-only attribute can be cleared
unless the temporary attribute is first cleared. According to an
exemplary embodiment, the legal hold may prohibit the
retained file from becoming unretained no matter what other
triggers are defined.

According to an exemplary embodiment, the legal hold
may not have any effect on a file that is retained forever since
the retention policy will never allow the file to become eli-
gible for deletion.

According to an exemplary embodiment, a file that is
retained for a fixed period and has an explicit expiry date may
not expire even if the retention expiration date and time is
reached as long as the legal holds state is set. Once the legal
hold is cleared, then the file expiration may be processed. If
the retention period of file has expired, the file may be deleted.

According to an exemplary embodiment, a file that is
retained indefinitely, i.e., does not have an explicit file expi-
ration defined, may not have an expiry date assigned if the
legal hold applies. Once the legal hold is cleared the file
retention may be modified and a file expiration assigned.

According to an exemplary embodiment, when a file legal
hold is triggered the trap layer may perform additional pro-
cesses to create metadata for the legal hold state. In an exem-
plary embodiment, operations may include any one of: (i)
identifying the retention state and determining whether the
file can be set on legal hold or not (if the file is retained forever
then the attempt to set legal hold may be failed, otherwise set
the legal hold if the file is already retained); (ii) identifying
and/or storing who put the file on legal hold (identifying
and/or storing the user ID of the user or application that
triggered the file be put on legal hold); (iii) identifying and/or
storing when the file was put on legal hold; (iv) creating one
or more alternate data streams or extended attributes to store
the legal hold information about the retained file; and/or (v)
encrypting and/or creating hash keys for additional file legal
hold information stored with the retained file.

According to an exemplary embodiment, when a file legal
hold is cleared, the trap layer may perform additional pro-

US 8,234,477 B2

23

cesses to update the metadata for the legal hold state. In an
exemplary embodiment, the operations may include any one
of: (1) identifying the retention state and determining whether
the file legal hold state is being cleared or not (if the file was
is not retained there may be no additional book keeping
required to be updated, otherwise the legal hold state may
need to be cleared and file associated metadata updated); (ii)
identifying and/or storing who cleared the file legal hold
(identifying and/or storing the user ID of the user or applica-
tion that triggered the file to be removed from legal hold); (iii)
identifying and/or storing when the legal hold was cleared;
(iv) updating one or more alternate data streams or extended
attributes storing the legal hold information about the retained
file; and/or (v) encrypting and/or creating hash keys for addi-
tional file legal hold information stored with the retained file.

According to an exemplary embodiment, the access privi-
lege policy may be extended to control the type of file that
may be created using a data identifier and other qualifiers to
prohibit the creation of certain types of files or allow them.
The qualifiers include file mask, file name, file extension,
owner and path. This ability is referred to as file screening
where the administrator can define policies that would pro-
hibit personal files such as mp3 and mpg files from being
stored on corporate storage resources.

According to an exemplary embodiment, it is conceivable
with the availability of access to the sources of open operating
systems and file systems to add the trap layer directly into the
file system layer to enforce the protection and retention of
files.

According to an exemplary embodiment, retaining a file
may involve a number of background functions. In an exem-
plary embodiment, when retention of a file is triggered, an
internal process may perform additional work to create the
metadata for the retention. According to an exemplary
embodiment, additional work may include, any one of: (i)
identifying and/or storing who retained the file, for example,
e.g., the user ID of the user or application that triggered the
retention of the file; (i) identifying and/or storing when the
file was retained; (iii) identifying the applicable retention
policy triggering the retention of the file; (iv) determining
what the retention expiry should be set to; (v) setting the
retention expiry (e.g., setting the value of the file last access
date); (vi) generating a digital signature of the file contents,
such as, e.g., a SHA hash key (according to an exemplary
embodiment, the hash may not be limited to the default data
stream associated with the file, but may also extend to alter-
nate data streams of the file); (vii) determining whether there
are any other policies that apply, such as, e.g., an archive that
would queue and create additional copies of the file on alter-
nate storage resources; (viii) creating a number of alternate
data streams or extended attributes to store additional infor-
mation about the file; and (ix) encrypting and/or creating hash
keys for additional file information stored with the file.

According to an exemplary embodiment, the trap layer
may intercept an attempted operation and engage another
component or action. In an exemplary embodiment, the trap
layer may engage another component or action to request
validation for the attempted operation to determine if the
attempted operation may be allowed. In an exemplary
embodiment, the trap layer may do the same for a request.
According to an exemplary embodiment, when the file con-
tents of a file matches particular contents, the trap layer may
send a message or communicate with another layer or com-
ponent to determine what the trap layer should do. In an
exemplary embodiment, the trap layer may simply notify
another layer or component and the other layer or component
may make an appropriate decision. According to an exem-

—

0

20

25

30

35

40

45

50

55

60

65

24

plary embodiment, the decision of the other layer or compo-
nent may also be based on a policy or threat level.

According to an exemplary embodiment, the trap layer
may validate the contents of a file and/or compare the digital
signature whenever a file is opened to determine if the file
may be opened. In an exemplary embodiment, the trap layer
may evaluate the expiry or retention expiry of a file to deter-
mine if access to the file may be allowed. According to an
exemplary embodiment, the trap layer may extend the expi-
ration concept to rights management, and may reject file
access to a file once the file has expired. In another embodi-
ment, the trap layer may use a policy where the contents of
metadata of a file, or some other source, may determine
appropriate action.

According to an exemplary embodiment, the trap layer
may store the file protection policies with the actual file in
accordance with any of the following: (a) the policy may be
stored as an alternate data stream; (b) the policy may be stored
as an extended attribute; and/or (c) the policy may be stored as
private reparse data. The trap layer may have policies to
manage directory operations such as any of the following: (a)
create sub-directory, rename sub-directory, move sub-direc-
tory out, move sub-directory in, delete sub-directory; (b) cre-
ate file, rename file, move file in, move file out, rename file,
delete file, change file attributes, change file permissions,
read file; or (¢) browse directory—the feature prohibits appli-
cations and users that do not know the actual names of the files
and sub-directories from being able to browse the contents of
the managed logical storage medium. According to an exem-
plary embodiment, the trap layer may enable users to enforce
privacy requirements by limiting access to contents to pro-
cesses that know exactly the name and path of the files they
are trying to access. In an exemplary embodiment, any
attempt to browse the contents in an application like Windows
explorer may fail regardless of the user and or application.
According to an exemplary embodiment, the trap layer may
enable third party applications to provide more realistic logs
that would reflect the fact that all access to secure content is
restricted to the third party application’s own applications and
context. In an exemplary embodiment, logs may be used for
legislation like HIPAA (US) and PIPEDA (Canada).

According to an exemplary embodiment, the trap layer
may intercept directory operations to determine possible
additional behavior or trigger additional background opera-
tions. In an exemplary embodiment, the trap layer may con-
trol operations on directories, such as, e.g., but not limited to,
deletion operations, rename operations and/or move opera-
tions. According to an exemplary embodiment, the trap layer
may consider a directory a special kind of file.

In an exemplary embodiment, the trap layer may intercept
operations to determine the target of the operations. Accord-
ing to an exemplary embodiment, if the target of a delete
operation is determined to be a directory, the trap layer may
then determine whether the directory is empty. In an exem-
plary embodiment, the directory may be considered empty if
the directory does not have any child objects, such as, e.g., but
not limited to, files or sub-directories. According to an exem-
plary embodiment, if the directory is empty, the trap layer
may allow the directory to be deleted. In an exemplary
embodiment, if the directory is not empty, the trap layer may
prevent the directory from being deleted. According to an
exemplary embodiment, the trap layer may use similar meth-
odologies in governing rename operations on a directory and/
or move operations on a directory.

According to an exemplary embodiment, the trap layer
may create hash keys that will be used to validate the authen-
ticity of the retained files. For example, (a) the trap layer may

US 8,234,477 B2

25

be configured to validate the hash key on every open opera-
tion and failing the operation if the hash key does not match;
and/or (b) the trap layer may be invoked to validate any file on
demand by an external operation triggered by the user and/or
application. In an exemplary embodiment, the trap layer may
create hash keys for all files that are created in managed
logical and/or physical storage mediums

In an exemplary embodiment, the trap layer may automati-
cally encrypt files that are created in managed logical and/or
physical storage mediums. The encryption and decryption
may, for example, happen independently of the user and/or
application. This may enforce security requirements that
would prohibit protected files from being accessed outside
the context and control of the trap layer.

According to an exemplary embodiment, the trap layer
may intercept file deletion operations to perform additional
background tasks, such as, e.g., but not limited to, secure
erasure. In most secure deployments, regulations such as
DOD 5015.2 dictate that deleted files or records must be
destroyed and overwritten to insure that the data cannot be
restored in any way shape or form. Typically secure erasure
may be executed by overwriting the contents of a file with
random patterns. Secure erasure requirements extend from
privacy legislation as well as defense and military standards,
and even extend to corporate governance to reduce liabilities.
In an exemplary embodiment, using the trap layer, a user or
application may use a simple delete operation, and if the
operation is allowed, then secure erasure may be performed
transparently without forcing the user or application to per-
form any additional operations beyond what they are familiar
with.

Some exemplary example of the flow of determining if a
file should be securely erased is outlined below. According to
an exemplary embodiment, when a file deletion operation is
attempted, the trap layer may intercept the operation and
determine whether the file is retained. If the file is retained,
then the trap layer may determine whether the file is eligible
for deletion. Eligibility may be determined by the trap layer
by comparing the file expiry date and time to determine what
kind of file retention is set on the file, such as, e.g., but not
limited to, retained forever, retained indefinitely or retained
for a fixed period. According to an exemplary embodiment, if
the file is retained the trap layer may prevent the deletion of
the file. If the file is not retained, then the trap layer may allow
the file to be deleted and may perform a number of back-
ground operations such as, e.g., but not limited to: (i) over-
write the contents of all the file streams, which may include a
default data stream and an alternate data stream, with a pat-
tern that may be either dynamically generated or simply pre-
defined; or (ii) repeat the overwrite operation several times,
such as, e.g., but not limited to, seven or fifteen times, depend-
ing on the applicable rules and regulations.

According to an exemplary embodiment, the trap layer
may obfuscate the user data by storing it in alternate data
streams or alternate locations rendering the files unreadable
and even as far as inaccessible outside the context of the trap
layer.

According to an exemplary embodiment, the term outside
the context of the trap layer may mean that the trap layer was
some how disabled, the trap layer was de-installed, or the
storage device was moved and connected to another server
that did not have the trap layer installed.

According to an exemplary embodiment, the trap layer
may have a private interface that would also protect and
prohibit the trap layer from being de-installed or deleted if the

20

25

30

35

40

45

50

55

60

65

26

case that there are retained files under it’s control. The private
interface may allow the trap layer to be upgraded but not
disabled.

According to an exemplary embodiment, the trap layer
may use a secure clock mechanism. In an exemplary embodi-
ment, to enforce the retention expiry times, the trap layer may
utilize a secure clock to maintain the system clock current.

According to an exemplary embodiment, the algorithm
utilized to secure the system time may be based on the fact
that the secure clock is synchronized with GMT. According to
an exemplary embodiment, regardless of the time zone the
server time may always be represented as a variation of GMT.
That means that if the server time zone is EST which is equal
to GMT-5, then the server time will have to always maintain
the same time difference. To achieve this goal there may be a
process monitoring the server time and comparing the server
time to the secure clock and resetting the server time to always
maintain the same time difference.

The secure time mechanism may authenticate the clock to
ensure that it is a sanctioned or authorized clock so that the
system cannot be spoofed.

According to an exemplary embodiment, the secure clock
may be able to sustain itself independent of the server power
to eliminate any time lapses. In an exemplary embodiment,
even ifthe server is shutdown for along duration or even if the
motherboard is replaced or reset, when the server is booted up
again the time may be reset in accordance with the difference
from the secure clock time, which in this particular example
is GMT-5.

According to an exemplary embodiment, the secure clock
mechanism may monitor changes in the system time. In an
exemplary embodiment, the secure clock mechanism may
monitor changes by intercepting attempts to change the time
or polling. According to an exemplary embodiment, the
secure clock mechanism may initialize a system clock based
ona system independent time source and automatically deter-
mine what the correct time should be. In an exemplary
embodiment the secure clock mechanism may need to adjust
the system clock back to the projected time if the system clock
changes from the expected time each time the time is polled.

According to an exemplary embodiment, the secure clock
mechanism may need to account for potential deviations that
may occur based on the inaccuracy of the external time
source. According to an exemplary embodiment, the tech-
nique to determine the accurate projected time may depend
on a number of factors. In an exemplary embodiment, the
mechanism may determine how long the external clock has
been running and determining what the accurate projection of
deviation would be. The clock may typically have a certain
deviation that is based on the manufacturer specifications.
These deviations may only apply to the clock since the time
the clock was started. According to an exemplary embodi-
ment, the mechanism may determine a projected time based
on a deviation average accumulated over the duration of the
life of the clock running time since the clock was first started.
In an exemplary embodiment, the average may need to be to
maintained over system restarts and protected to prohibit
tampering. According to an exemplary embodiment, the
secure clock mechanism may need to determine if the system
time is accurate at system startup as well as when the system
is running. In an exemplary embodiment, the retention
mechanism may need to ensure that the system is valid and
that all the associated retention expirations are valid as well.

According to an exemplary embodiment, the trap layer
may need to monitor the secure clock mechanism for secure
system time violations. In an exemplary embodiment, the trap
layer may enforce restrictions in the event the system time is

US 8,234,477 B2

27

modified and the underlying security mechanism is unable to
restore the time to the correct value. According to an exem-
plary embodiment, restrictions enforced due to time viola-
tions may include an number of actions, such as, but not
limited to, prohibiting the creation of new files and directo-
ries, literally rendering the storage medium as a read-only
device, prohibiting and inhibiting the ability to trigger the
retention of the file, preventing files from expiring and/or
preventing files from being deleted even if they appear to have
expired their retention period.

According to an exemplary embodiment, restrictions and/
or policies may be defined to allow or disallow certain appli-
cations or processes from performing specific operations. In
an exemplary embodiment, certain operations which may be
normally restricted may be allowed by certain named and/or
registered processes. According to an exemplary embodi-
ment, the opposite may be true, certain operations which may
be normally allowed may be disallowed for certain named
and/or registered processes. In an exemplary embodiment,
the trap layer may identify a process belonging to a computer
virus and may disallow the process from performing any
operation. In an exemplary embodiment, the trap layer may
identify to process to be any other type of process and may
disallow and/or allow specific operations based on the type of
process.

According to an exemplary embodiment, the application
and/or process based restrictions and/or policies may func-
tion with content based restrictions and/or policies. In an
exemplary embodiment, a restriction and/or policy for a pro-
cess may be based on the contents of one or more files sup-
porting a process. In an exemplary embodiment, the trap layer
may evaluate the content of a file launching a process to
determine the restrictions and/or policies for the process.
According to an exemplary embodiment, the trap layer may
disable all operations for a harmful process after determining
the harmful process belongs to a virus based on the file
launching the process.

According to an exemplary embodiment, a restriction and/
orpolicy for a process may additionally allow and/or disallow
operations based on the content of a file the process is
attempting to act upon. In an exemplary embodiment, the trap
layer may evaluate the content of a file to determine if a
particular process may act upon the file. According to an
exemplary embodiment, the trap layer may allow a particular
process to delete a file containing serial codes but not delete a
file containing social security numbers.

In an exemplary embodiment, privileged applications may
be created and/or defined. In an exemplary embodiment, a
privileged application may be governed by restrictions and/or
policies specifically defined for the privileged application.
According to an exemplary embodiment, privileged applica-
tions may have a digital signature they may use to authenti-
cate themselves with the trap layer.

According to an exemplary embodiment, the trap layer
may be created in the context of an application. In an exem-
plary embodiment, the trap layer may be an application spe-
cific trap layer that may trap operations performed by the
specific application. According to an exemplary embodiment,
the application specific trap layer may enforce restrictions on
operations initiated by the specific application. For example,
e.g., an application specific trap layer may be able to restrict
the operations a specific application may attempt to perform
against a retained file.

In an exemplary embodiment, an application specific trap
layer may allow the specific application to fail gracefully
and/or prohibit attempts by the user to initiate operations that
would be failed by other trap layers. The benefit of this

20

25

30

35

40

45

50

55

60

65

28

approach is that the user interaction with the application is
streamlined and the application would be prohibited from
initiating operations that would be failed in the first place. For
example, e.g., the application specific trap layer may disable
the delete operation from being initiated if the file cannot be
deleted, e.g., such as when the file may be on legal hold, the
file may be retained and the expiry has not been reached, the
file may be retained indefinitely and has no defined expiry
(“cannot expire”), or the file is retained for ever and cannot
expire.

According to an exemplary embodiment, there may be a
significant risk when the underlying file that is referenced by
an application fails to be deleted or modified. In an exemplary
embodiment, applications are supposed to handle such con-
ditions on their own. However, in reality there is no standard
and some applications will handle such errors better than
others. The best solution may be to take pre-emptive mea-
sures by intercepting the requests and validating the policies
and whether the operation can be performed and creating a
complete transaction that would perform all the background
processes and cleanup and then complete the operation all in
one step as far as the user interaction is concerned.

According to an exemplary embodiment, the trap layer
may expand the scope of operations, making applications
more storage and retention aware. In an exemplary embodi-
ment, the trap layer may only allow an operation, such as, e.g.,
but not limited to, delete, move, execute, rename or append,
etc, on an object, such as, e.g., but not limited to, a Microsoft
SharePoint, a specific site, a document library, a folder, a leaf,
or a file, etc., if the operation may be completed for all of the
child objects of the object. According to an exemplary
embodiment, the trap layer may intercept operation requests,
validate policies and if an operation may be performed, create
a complete transaction performing all the background pro-
cesses and cleanup, and complete the operation. In an exem-
plary embodiment, the trap layer may determine if an opera-
tion may be conducted on an object in a single step from the
user’s perspective. According to an exemplary embodiment,
the trap layer may disable the user from attempting and/or
selecting an operation if the operation is pre-determined to be
unable to be performed.

Numerous other embodiments of the invention may be
envisaged without departing from the spirit and scope of the
invention.

What is claimed is;

1. A method for applying an operation access privilege to a
storage medium, comprises:

associating an access privilege with at least a portion of the

storage medium;

intercepting an attempted operation on said at least a por-

tion of the storage medium,
wherein said intercepting occurs regardless of an iden-
tity of a user attempting the attempted operation;
comparing the attempted operation to the access privilege;
and
allowing, or denying the attempted operation based on
comparing the attempted operation to the access privi-
lege

wherein at least one of: said associating, said allowing, or

said denying is based on enforcing a policy.

2. The method according to claim 1, wherein said allowing
or said denying comprises at least one of allowing, or denying
the attempted operation based on a content of a logical file
associated with said at least a portion of the storage medium.

3. The method according to claim 2, wherein said allowing,
or said denying comprises at least one of allowing, or cancel-
ling the attempted operation based on the content of the file.

US 8,234,477 B2

29

4. The method according to claim 1, wherein said allowing,
or said denying the attempted operation comprises:

allowing a create file operation to create a file associated

with said at least a portion of the storage medium;
evaluating a content of the file; and

at least one of allowing, or deleting the file based on said

evaluating.

5. The method according to claim 1, wherein said associ-
ating the access privilege comprises associating the access
privilege with said at least a portion of the storage medium
based on a file attribute of a logical file associated with said at
least a portion of the storage medium.

6. The method according to claim 1, wherein said enforcing
the policy comprises enforcing a retention policy comprising
preventing said a least a portion of the storage medium in a
retained state from being modified while a retention period of
said at least a portion of the storage medium is unexpired.

7. The method according to claim 6, wherein said enforcing
a retention policy is enforced for at least one of: a file name,
a file attribute, a file path, or a file content, of a logical file
associated with said at least a portion of the storage medium.

8. The method according to claim 6, wherein said enforcing
a retention policy comprises determining if said at least a
portion of the storage medium is eligible to enter the retained
state based on a content of said at least a portion of the storage
medium.

9. The method according to claim 8, wherein said deter-
mining comprises determining if said at least a portion of the
storage medium is eligible to enter the retained state based on
a content group associated with said at least a portion of the
storage medium, the content group associated based on evalu-
ating said at least a portion of the storage medium for pre-
defined content.

10. The method according to claim 6, wherein said associ-
ating the access privilege comprises holding the retained
state.

11. The method according to claim 10, wherein said hold-
ing the retained state comprises at least one of:

suspending expiration of a retained state portion of the

storage medium;
suspending an unexpired retained state portion of the stor-
age medium from entering an expired retained state;

suspending clearing of a read only attribute of the retained
state portion of the storage medium by setting a tempo-
rary attribute of the retained state portion of the storage
medium; or

suspending deletion of an expired retained state portion of

the storage medium.

12. The method according to claim 1, wherein said enforc-
ing the policy comprises enforcing a retention policy com-
prising triggering one or more background processes when
said at least a portion of the storage medium enters a retained
state.

13. The method according to claim 12, wherein the one or
more background processes comprises at least one of:

creating metadata for the retention;

identifying the user retaining said at least a portion of the

storage medium;

storing user identification for the user retaining said at least

a portion of the storage medium;

identifying the retention policy retaining said at least a

portion of the storage medium;

storing the retention policy retaining said at least a portion

of the storage medium;

generating a digital signature of the content of said at least

a portion of the storage medium;

20

25

30

40

45

55

60

30

generating a digital signature comprising a hash of the
content of said at least a portion of the storage medium;

generating a digital signature of the content of at least one
of a default data stream associated with a file associated
with said at least a portion of the storage medium or one
or more alternate data streams associated with the file
associated with said at least a portion of the storage
medium,;

storing the digital signature;

determining if any other policies apply;

creating at least one of an alternate data stream or an

extended attribute to store the metadata;

encrypting hash keys for the metadata; or

storing the hash keys.

14. The method according to claim 6, wherein said enforc-
ing the retention policy comprises triggering retention of said
at least a portion of the storage medium based on at least one
of:

the attempted operation;

setting a read-only attribute of the file;

renaming the file to a file name;

renaming the file to a particular name;

resizing the file;

resizing the file to a particular size;

creating an extended attribute associated with the file; or

creating an alternate data stream associated with the file.

15. The method according to claim 6, wherein said enforc-
ing the retention policy comprises enforcing an archive policy
comprising queuing said at least a portion of the storage
medium to be copied to an alternate media, when said at least
a portion of the storage medium is retained.

16. The method according to claim 1, wherein said allow-
ing, or said denying the attempted operation comprises forc-
ing a secure erasure for a delete operation on said at least a
portion of the storage medium, wherein the secure erasure
comprises at least one of overwriting the content of said at
least a portion of the storage medium or overwriting an alter-
nate data stream associated with said at least a portion of the
storage medium.

17. The method according to claim 1, wherein said allow-
ing, or said denying comprises at least one of:

allowing the operation on a directory if the directory is

empty; or

denying the operation on the directory if the directory is not

empty.

18. The method according to claim 1, wherein said allow-
ing, or said denying comprises at least one of allowing, or
denying the attempted operation based on at least one of an
application or a process attempting the attempted operation.

19. The method according to claim 18, wherein said allow-
ing, or said denying the attempted operation based on at least
one of the application or the process comprises at least one of:

allowing the attempted operation for at least one of a

named or a registered process;

denying the attempted operation for at least one of the

named or the registered process; or

allowing the attempted operation for a privileged applica-

tion, the privileged application comprising an applica-
tion operable to be authenticated via a digital signature.

20. The method according to claim 1, wherein said enforc-
ing the policy comprises enforcing a policy based on an
application, the policy comprising at least one of:

enforcing application based intercepting of the attempted

operation;

disabling an operation option provided to the user;

expanding the scope of an operation based on the applica-

tion; or

US 8,234,477 B2

31

at least one of allowing, or denying the attempted operation
based on validating a child object of a parent object of an
attempted operation.

21. The method according to claim 1, wherein said enforc-
ing the policy comprises enforcing a secure time routine, the
routine comprising at least one of:

using a secure clock;

maintaining a system clock comprising using the secure

clock;

accounting for deviations based on inaccuracies of the

secure clock;

verifying operation of a secure clock or authenticating the

secure clock;

at least one of:

denying at least one attempted operation,

preventing said at least a portion of the storage medium
from being retained, or

rendering the storage medium read-only, if the secure
clock can not be at least one of: verified or authenti-
cated; or

running the secure clock independent of a server.

22. A method for intercepting attempted access to at least a
portion of a storage medium, comprises:

receiving at least one of an attempted access operation to

gain access to or from, or an attempted write operation to
write data to, the at least a portion of the storage medium;
intercepting at least one of said attempted access operation
or said attempted write operation, prior to permitting or
not permitting said operation on the at least a portion of
the storage medium,
wherein said intercepting occurs regardless of an iden-
tity of a user attempting the attempted operation;
determining whether the attempted operation is permitted
based upon at least one of a privilege, a policy, a rule, or
a determination; and
permitting, or not permitting the attempted operation based
on said determining whether the attempted operation is
permitted
wherein said at least one permitting or not permitting is
based on enforcing said at least one privilege, policy,
rule or determination.

23. The method according to claim 22, wherein said at least
one privilege, policy, rule or determination comprises analyz-
ing content of said data.

24. The method according to claim 23, wherein said ana-
lyzing content comprises determining whether access or stor-
age of said content is permitted based on said at least one
privilege, policy, rule, or determination.

25. The method according to claim 23, wherein said deter-
mination comprises:

determining if an operation is eligible to be executed on a

file, based on the content of the file.

26. The method according to claim 25, wherein said con-
tent is analyzed for existence of at least one of:

a social security number,

a credit card number,

other private personal information,

a type of content,

inappropriate content, or

harmful content.

27. The method according to claim 26, wherein said harm-
ful content comprises at least one of:

a computer virus,

malware,

adware,

spyware,

a computer worm,

5

15

20

25

30

35

40

45

50

55

60

65

32

a harmful file, or

a malicious file.

28. The method according to claim 27, wherein the method
further comprises:

preventing said harmful content from at least one of: being

created, or being stored.

29. The method according to claim 27, wherein the method
further comprises:

allowing a file of said harmful content to be created to

evaluate the contents of the harmful file, and

deleting the harmful file if the file is determined to be

harmful.

30. The method according to claim 22, further comprising:

receiving at least one of a restriction or a policy to at least

one of allow or disallow, at least one of an application or
a process, from performing at least one operation.

31. The method according to claim 22, further comprising
receiving a rule, wherein at least one operation normally
restricted is allowed by at least one named or registered pro-
cess.

32. The method according to claim 22, further comprising
receiving a rule, wherein at least one operation normally
allowed is disallowed by at least one named or registered
process.

33. The method according to claim 22, wherein the method
comprises:

identifying a process belonging to a computer virus, and

disallowing the process belonging to the computer virus

from performing any operation.

34. The method according to claim 22, wherein the method
comprises:

identifying a particular type of a process, and

at least one of:

allowing the process to perform at least one operation, or

disallowing the process from performing at least one
operation, based on the particular type of the process
identified.

35. The method according to claim 22, wherein the method
comprises at least one trap layer.

36. The method according to claim 35, wherein said at least
one trap layer comprises at least one of:

a file system layer,

a software layer,

an application layer,

an operating system layer, or

a hardware layer.

37. The method according to claim 35, wherein the method
comprises executing a trap layer on at least one of:

a hardware device,

a device running a Windows OS,

a device running a UNIX OS,

a device running a Mac OS,

a device running an OS,

a file system,

a Windows file system,

an NTFS file system,

a UNIX file system,

a Solaris file system,

an Apple file system,

a UNIX file system,

a physical device,

a physical medium device,

a storage medium device,

a network device,

a computing device,

a cell phone,

a communications device,

US 8,234,477 B2

33

a handheld device,

a computer,

a wireless phone device,

a telephony device,

a phone, or

a personal digital assistant (PDA).

38. The method according to claim 22, wherein said deter-
mining comprises at least one of: an application based restric-
tion, an application based policy, a process based restriction,
a process based policy, a content based restriction, or a con-
tent based policy.

39. The method according to claim 22, wherein a restric-
tion or policy for a process may be based on content of one or
more files supporting a process.

40. The method according to claim 22, comprising:

evaluating content of a file wherein said file launches a

process; and

launching the process to determine at least one restriction

or policy for the process.

41. The method according to claim 40, comprising:

determining a harmful process belongs to a virus based on

said launching; and

disabling at least one operation for said harmful process.

42. The method of claim 22, wherein said intercepting is
performed by a file system.

43. The method of claim 22, further comprising at least one
of:

receiving at least one of said privilege, said policy, said

rule, or said determination relating to a given file;
assigning metadata to a given file relating to operations
permitted on said given file;

assigning metadata to a given file relating to validating

contents of a given file; or

confirming contents have not been modified or tampered

comprising at least one of: a hash, a hash key, an SHA
hash, an encryption key, or a digital signature.

44. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising at least one of:

interacting between said trap layer and at least one other

component;

retrieving additional information by said trap layer; or

determining a role said trap layer will perform comprising

whether to at least one of: allow, reject, or modify a
request.

45. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising:

triggering by said trap layer initiating other actions com-

prising at least one of:
performing a secure erasure,
instructing to shred physical file,
deleting a given file if said given file can be deleted, or
performing additional operations comprising at least
one of:
initiating shredding physical contents of a file if file
can be deleted,
initiating shredding on all delete operations, or
initiating shredding conditional on some files or some
volumes, depending on policies.

46. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising:

triggering by said trap layer initiating other actions com-

prising at least one of:

intercepting a delete operation, and

determining when to actually erase contents with a spe-
cific pattern,
wherein, at least one of:

20

25

30

40

45

50

55

60

65

34

an erasure comprises overwriting at least one of a
physical content or segment of a file more than once
with a predetermined pattern;

an erasure is triggered immediately; or

an erasure is tagged when the file is marked for dele-
tion and at least one of:
the actual erasure takes place once the file is closed,

depending on file system; or
the erasure is performed on file cleanup after the
file is closed, and all handles or channels are
closed.
47. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising:
triggering by said trap layer initiating other actions com-
prising at least one of:
creating file signatures upon certain conditions compris-
ing when the file retention is triggered comprising at
least one of:

creating said file signature when the file is finally
closed and is no longer modified;

creating said file signature triggered immediately; or

creating said file signature when the file is in final
cleanup and all handles or channels are closed, or
contents are flushed from the cache.

48. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising at least one of:
triggering by said trap layer initiating other actions com-
prising at least one of:
intercepting at least one of: a plurality of file types; at
least one directory; or alternate data streams;
interrogating contents of at least one directory to enable
additional operations comprising at least one of:
determining if said at least one directory is empty, or
not,

determining whether to allow at least one of rename,
or delete operations,

determining if the at least one directory is not empty
and if not empty, then at least one of:
rejecting all delete operations,
rejecting all rename operations, or rejecting all

move operations, or

determining if the at least one directory is not empty,
and if not empty, then at least one of:
allowing all operations, or
allowing certain operations;

intercepting an open directory for enumeration opera-
tion to prevent browsing of at least one directory
contents comprising at least one of:

allowing file and directory operations that are for a
specific file or directory name to succeed, but mak-
ing operations enumerating contents fail;

intercepting similar operations comprising at least one
of: moditying security, adding or removing files,
changing attributes, or adding or removing directo-
ries;
intercepting operations to the default data stream portion
of a file, or alternate data streams, and conditionally
allowing, disallowing, or modifying such requests
depending on policies; or
determining policies dynamically by at least one of:
querying a parent directory, querying a parent vol-
ume, querying associated policies, defining policies
at an individual object level, forcing additional opera-
tions, or triggering other operations.
49. The method of claim 22, wherein said intercepting is
performed by a trap layer at a level wherein said trap layer

US 8,234,477 B2

35

automatically encrypts or decrypts contents of a logical stor-
age volume or medium, and at least one of:

wherein if the trap layer is unavailable then contents are
obscured by the encryption of the contents on the physi-
cal volume;

wherein if the trap layer determines conditions are normal,
then the trap layer allows access to the volume and
decrypts contents allowing the actual files to be accessed
as a normal file system; or

wherein if the trap layer determines that conditions are
abnormal, then the trap layer rejects all access requests.

50. The method of claim 22, wherein said intercepting is

performed by a trap layer further comprising at least one of:
triggering by said trap layer initiating other actions com-
prising at least one of:
intercepting an additional partition, or volume manage-
ment operations, and
depending on the protection policies, at least one of
allows or disallows said volume management opera-
tions, or modifies said volume management opera-
tions to prohibit any anomalies comprising at least
one of:
preventing delete or format operations on protected
partitions; or
intercepting other operations comprising at least one
of snapshot creation, or dismount operations, or
partition resizing (comprising shrinking or expan-
sion).
51. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising at least one of:
wherein said trap layer is implemented in a hardware layer
below the file system to at least one of: validate and
compare byte streams, or look for digital signatures;
wherein said trap layer interacts with additional compo-
nents on the hardware level to at least one of: determine
additional operations or restrictions, or to trigger addi-
tional actions within the trap layer, or to trigger addi-
tional actions at the hardware layer;
wherein said trap layer triggers additional actions on a
physical storage device comprising at least one of: trig-
gering certain logical, or physical sectors of the storage
medium to become un-readable, un-writable; or
un-modifiable;
wherein said trap layer enables defining a type of storage
technology where certain deficiencies or shortcomings
of a given physical medium is exploited to achieve a
secure, tamper proof, type of storage medium compris-
ing at least one of:
triggering such media with known limitations on the
number of re-writes to mark certain sectors as perma-
nently un-modifiable as if the number re-writes have
been exhausted;

triggering such media with known limitations on the
number of re-writes to mark certain sectors as perma-
nently unreadable or corrupt as if the number re-
writes have been exhausted or it is physically corrupt;

applying to various media types comprising at least one
of: flash drives or NAND; or

marking physical media as destroyed and permanently
unreadable at the physical hardware level;

wherein said trap layer interacts with other components
comprising control of system time, comprising at least
one of:

a. controlling incorporatinge the use of monitoring tools or
components that intercept or poll the system time and
determine whether system time is within an allowed
range or not, comprising at least one of:

20

25

30

35

40

45

50

55

60

65

36

i. providing a time source that is used that is external or
internal to the system to validate the system time
relative to at least one of GMT or universal time, or

ii. allowing for a small deviation by the algorithm, based
on the actual time source that allows for variance in
time based on how long the clock has been running;

b. wherein if the system time is changed beyond an allowed
deviation, then external tools provide for at least one of:
1. attempting to reset time and date according to average

deviation time applied to how long the clock has been
running, or

ii. if such attempt fails, then triggering trap layer to at
least one of:
locking down at least one storage volume or reposi-

tory, or
preventing any modifications, or preventing all
access; or

c. wherein time management system is self learning com-
prising: monitoring average deviation or maintaining an
average on an ongoing basis at a regular interval result-
ing in an average number of seconds per period and at
least one of:

i. when the system starts up, the time management com-
ponent gets the system time and compares it to the
time source (clock) and applies the average deviation
to how long the clock has been running to determine
whether it is within the allowable range or not;

.when if the extenal clock or time source is unavailable

at boot time then the system is considered unsecure
and the time is considered unverifiable and hence the
system is locked down and all volumes are at least one
of: set to read-only, or prevented from access by trig-
gering such states on the trap layer associated with
such volumes and partitions;

iii. when the system is running, the time management
establishes a reference time and polls the system time
ata regular interval, knowing what time to expect and
hence it not necessarily having to query the time
source for any additional time, and in this case any
attempt to alter the time outside what is projected is
reset accordingly and if the reset fails, then the system
is set in an unsecure state and the trap layer is notified
accordingly which triggers locking the volume, or
taking the volume offline;

iv. when in the event the system is set to sleep, and then
is woken up, then the time management tools detect
that state and take the appropriate action to determine
what the correct time is and reset accordingly, and
failure to reset triggers an unsecure state and the asso-
ciated locking of volumes in read-only or preventing
all access;

v. when in some cases it is necessary to poll the physical
external source to validate what the time is regardless
of'the projected time just in case the time management
monitoring tools are unable to determine whether the
system was asleep or not; and applies the same algo-
rithm to reset the time accordingly;

vi. when in the event the secure time source or clock
cannot be validated or queried then the unsecure state
is triggered;

vii. when under a condition, if the time management
tools are shutdown or the the system locks down, and
the trap layer prevents any access or modification of
the volumes;

viii. when time management cannot be overridden, then
changing the system motherboard, or BIOS battery
cannot overrule the secure time; or

=

i

US 8,234,477 B2

37

ix. when the secure time source incorporates additional
secure signatures or validation to determine thatitis a
trusted source, the system cannot be bluffed or
spoofed, and such signatures and identifiers incorpo-
rate combinations of at least one of a hash code, an
encryption, or a unique identified time on the time
source itself; or

d. wherein time management is incorporated as whole or

partially within the trap layer; or

e. wherein the system further comprises retention integra-

tion comprising secure communication with authorized

applications at least one of external to the data manage-
ment system, or in a partner application, wherein at least
one of:

wherein, with these definitions, trusted and secure com-
ponents can have certain privileges that allow the
setting of the state of the individual files and directo-
ries under certain state and allow exclusive access to
managing such state to the trusted applications; or

wherein, these controls limit what operations compris-
ing at least one of:

file retention manipulation can be performed, when files

can be retained, when the retention can be extended,

when the file can be excluded from retention, or when
the file is to be deleted, or eventually erased by the trap
layers.

52. A method for intercepting an attempted download of
data to at least a portion of a storage medium, comprising:

receiving at least one attempted download operation to

receive the data to store the data on the at least a portion
of the storage medium;

intercepting the at least one attempted download operation,

prior to permitting the at least one attempted download

operation on the at least a portion of the storage medium,
wherein said intercepting occurs regardless of an iden-
tity of a user attempting the attempted operation;
determining whether the at least one attempted download
operation is permitted based upon analysis of the content
of the data,

wherein the analysis identifies harmful content compris-
ing at least one of:

a computer virus,

malware,

adware,

spyware,

a computer worm,

a harmful file,

inappropriate content, or

a malicious file; and

permitting, or not permitting the at least one attempted

download operation based on said determining.

53. The method of claim 52, wherein the analysis is per-
formed on at least one of a same or a different device than the
device comprising the storage device.

54. A method for intercepting an attempted operation on at
least a portion of a storage medium, comprising:

receiving at least one attempted operation to operate on

data with respect to the at least a portion of the storage

medium;

intercepting said at least one attempted operation, prior to

permitting said at least one attempted operation with

respect to the at least a portion of the storage medium,
wherein said intercepting occurs regardless of an iden-
tity of a user attempting the attempted operation;
determining whether the at least one attempted operation is
permitted based upon analysis of the content of the data,

20

25

30

35

40

45

50

55

60

65

38

wherein the analysis identifies content comprising at
least one of:
a social security number,
a credit card number,
other private personal information,
harmful content,
a computer virus,
malware,
adware,
spyware,
a computer worm,
a harmful file,
inappropriate content, or
a malicious file; and
permitting, or not permitting the attempted operation
based on said determining.

55. The method of claim 54, wherein the analysis is per-
formed on at least one of: a same or a different device than the
device comprising the storage device.

56. The method of claim 54, wherein the attempted opera-
tion comprises at least one of:

reading from,

accessing,

writing to,

sending to, or

receiving from, the at least a portion of the storage device.

57. The method of claim 54, wherein said intercepting
comprises:

intercepting a request for said at least one attempted opera-

tion, and at least one of:

waiting for a user intervention, or

waiting for a determination whether the operation
should be allowed.

58. The method of claim 54, wherein said intercepting
comprises:

determining or validating at least one of a signature or

another identifier of a file comprising:
determining if said file is one of: known origin, or
unknown.

59. The method of claim 58, wherein said intercepting
comprises:

intercepting all operations on the unknown files; and

depending on a policy, determining an action to be taken

comprising at least one of:

suspending operation until at least one of a user inter-
vention, or an administrator intervention; or

denying and rejecting at least one of said attempted
operations on unknown files.

60. The method of claim 44, wherein said intercepting
comprises:

intercepting said at least one attempted operation; and

depending on at least one policy, at least one of:

modifying said at least one attempted operation to at
least one of:
prevent modification,
triggering an action; or
triggering a delete on file close;

modifying a privilege on a file open operation to at least
one of:
removing write access, or
prohibiting write access; or

marking a file for deletion, and upon file close automati-
cally deleting the file if the file violates the at least one
policy.

