a2 United States Patent

US007076624B2

(10) Patent No.: US 7,076,624 B2

Shaath et al. @5) Date of Patent: Jul. 11, 2006
(54) METHOD AND SYSTEM FOR PROVIDING 4,800,223 A * 12/1989 Cruess et al.ccovneee 711/207
RESTRICTED ACCESS TO A STORAGE 4947318 A * 81990 Mineo 713/200
MEDIUM 4958314 A * 9/1990 Imai et al. .. 369/47.54
4,975,898 A * 12/1990 Yoshida 369/100
. . 5,163,147 A * 11/1992 Orita ...cccoeeveeevenereeeneennens 707/9
(75 Inventors: gz;‘s‘:lgfh;:g;af?gﬁ (%;Al‘l)}’, g{’,:f‘l:;an 5214627 A * 5/1993 Nakashima et al. 369/275.3
X 5" > ’ 5,434,562 A * 7/1995 Reardoncccceee. 713/200
Stittsville (CA); Yasser Lulu, Ottawa 5495533 A * 2/1996 Linehan et al. 713/155
(CA); Fu Yaqun, Nepean (CA) 5,537,636 A * 7/1996 Uchida et al. 707/200
5,572,675 A * 11/1996 Bergler ... 719/328
(73) Assignee: KOM Networks Inc., Kanata (CA) 5,596,755 A * 1/1997 Pletcher et al. 710261
5,708,650 A * 1/1998 Nakashima et al. 369/275.3
(*) Notice: Subject to any disclaimer, the term of this 5,717,683 A * 2/1998 Yoshimoto et al. 369/275.3
patent is extended or adjusted under 35 5,778,365 A * 7/1998 Nishiyama 707/9
U.S.C. 154(b) by 29 days. 5,825,728 A * 10/1998 Yoshimoto et al. 369/30.11
5,850,566 A * 12/1998 Solan et al.c.....
(21) Appl. No.: 10/600,540 5,949,601 A * 9/1999 Braithwaite et al.
5,978,914 A * 11/1999 Carley et al. 713/200
ad- 6,044,373 A * 3/2000 Gladney et al. 707/10
(22) Filed: Jun. 23, 2003 6256087 BI* 92001 Tto et al. oo .. 711/164
(65) Prior Publication Data 6,336,187 B1* 1/2002 Kern et al. 713/161
US 2004/0088296 A1 May 6, 2004 * cited by examiner
L. Primary Examiner—Hiep T. Nguyen
Related U.S. Application Data (74) Attorney, Agent, or Firm—Venable LLP; Ralph P.
(60) Continuation of application No. 10/032,467, filed on Albrecht; Caroline J. Swindell
Jan. 2, 2002, now Pat. No. 6,654,864, which is a
division of application No. 09/267,787, filed on Mar. &7 ABSTRACT
15, 1999, now Pat. No. 6,336,175.
A method of restricting file access is disclosed wherein a set
(51) Int. Cl of file write access commands are determined from data
GOGF 12/14 (2006.01) stored within a storage medium. The set of file write access
LE7) RRLUE T 6 RSN 711/163 ~ commands are for the entire storage medium. Any matching
(58) Field of Classification Search 711/163; file write access command provided to the file system for
707/9: 713/200 that storage medium results in,an error message. Other file
See application file for complete search history. write access commands are, however, passed onto a device
driver for the storage medium and are implemented. In this
(56) References Cited way commands such as file delete and file overwrite can be

4,757,533 A *

U.S. PATENT DOCUMENTS
7/1988 Allen et al. 713/192

INPUT T
OUTPUT
LAYER

DISPLAY

disabled for an entire storage medium.

31 Claims, 7 Drawing Sheets

APPLICATION
LAYER

US 7,076,624 B2

Sheet 1 of 7

Jul. 11, 2006

U.S. Patent

saolaap abesojs-sse w
[

uolressdo
pajsanbal
yno Aised = .

wayshks a1}

wa)sAs all}

Aytinoasg

syybis ssad2e Y234yod”

E

saoeds ssoappe
snyelys O/ waysAsqgns o}

Yilm gy) uinyal sniels O/t Adoa
‘uojjesado aja|dwo>d .e

"
MO .
JAA|JP 831ABP
—~—

(Tusnesol | J

~ 4 d ¥l

.. E.P_ 081}
T -\- uojye20] -

—

L d Yl Uilm SJIaAllp yoeis O/l @
ajejsdoidde |2~ 2 N _‘\
©) 4l
d i e e
ajesoqje--°-""°" -
" > . 1/.
TeJsyoafgo 2y i1abeue W O/l
* a1e00]| @

13 A14p
waysAs ol

JabBbeue W
i2a(qo0

sweuy2afqo dn xoo_..

saolAldg wayshs Ofl

apow |aulay

S

. .-lsanbai SNLVYLSLN
- - " (10s8lgo 3y) Jojpue

'©) uado ajpuey c::?_\e

/\\Emym%mnjm\

US 7,076,624 B2

Sheet 2 of 7

Jul. 11, 2006

U.S. Patent

¢ 'Old

yoa(goa|idad

120[q0ad1A8Qd
sjuswinbie

XXX NW dul
XXX rWddi

i

991Aap

. —

0 =~

. ~

ysanbayals|dwono] 4yl \

19IEIXONIEISO| (pojes0iie-gs)\
(uopeiado Q| uaallp

-tdnusaju) a3a|dwos) waysks 3y ||ed

~ ©®:

>daisanbayoj

(3dnuiaju) 831A235s)

(uinjad pue adjAap
" uoc uogjesado ueys) | = \

19A1IP

yvoegueisol |/ _

pajaidwo yum ~

~— — — v —— o — "

4_ Buipuagdiiepo) |/ *
,Ei__, | Uoeso| %
M _ | %9835 O \
|] _ ,
! 1
| _ﬁ %Gﬂmuo:mva) \
e -as4 -
/] ol s) i \
T meuo o
/ Lo © —_— saunnoy |
[uonesoyse}sdiixaNIano| Lw>_._U/ uo}e20] Hoddng f
%l auynoyuone)dwosiaso) Emugmm_c A28s O/ XX¥0|
. uo(jeda| _
_v_usmo_ |
|
cumao 3l /
» isenbas | L Thwmmcmz O_\
\ alIM/peal @ p
~ —

US 7,076,624 B2

Sheet 3 of 7

Jul. 11, 2006

U.S. Patent

€ Old

NEICA g > H3AY]
VL W3LSAS
/ 314
T
i AYdSIA
NOILYOIddY

HIAV
E
LNaNI

US 7,076,624 B2

Sheet 4 of 7

Jul. 11, 2006

U.S. Patent

¥ "Old

aoeds ssaappe

smeys o/l weysAsqns 0}
s9ojaap abesoys-sse w Ul M g ¥ uinyol snieys o/ Adoo
‘uojjesado s1ajdwoo _0

ojjelado
pajsanbal
}Jno A1se o~

S

18 AL4P mu_>ou‘\. -

13 ALP
3)1shks @
w) _:lrm,....

d d| Uit M SIBALID
ajeyadosdde |jed

Uo13edo0| | gy
seys
b | } O/l 804
uojleso|
¥2e1s 0O/ \@
d ¥l

d d! U
3182 0]| B mm——

D

WwaysAs ol _A\l.\‘\!\\\l T
1022(qo 3y 19Beuei Qi
aled ol @

13}11d WOM

waysAs ajly

Aj1inosasg

N

syyBis ssaooe f;::h@ S92IA19g WwalsAs O/l

1abeue N
109fq 0

sweu}2a[gqo dn %00y apow jausay

apow 43asn

}jsanbau SNLYLSLN

——T330(q0 ai) jo/pue
uado Jrpuey uinyad .e
Z

©)
/.\ Eﬁm\amn:mA\

US 7,076,624 B2

Sheet 5 of 7

Jul. 11, 2006

U.S. Patent

G "Old
EEN\-le!
30IA30 0L ¥0
H3AV
W3LSAS 34 0L
183N03Y AIQONW 1S3N03Y 30IA0Yd

NOILYO1ddV¥ OL HOU¥3 ON3S

1S3N03d
1d40ddNS
WNId3IW
JOVY0LS
s30a

Q3I141a0NW
34
18303y
NV

1S3N03Y 1d381NI

3OVYCLS V1VJ 804
1S3N034 3dIACYd

US 7,076,624 B2

Sheet 6 of 7

Jul. 11, 2006

U.S. Patent

9°0ld

§ 914 40 QOHLIN WJO4¥3d

JIAVTWILSAS 3714 FHL ANV
H3IAVT
dvdl 3HL 40 INO OL Y1v(30IA0Yd

NNIQ3NW
3FOVHOLS GILNNOW FHL A8 Q31404ddNS
S1S3N03Y
ONINING3L3Q NI 38N HO4 v1v(a Qv3d

SNOILOI¥1S3d SS300V INIWGEL3d
0L WNIQ3W 39VH0LS NO VLvQ Av3y

WNIQ3W 3OVH0LS INNOW

US 7,076,624 B2

Sheet 7 of 7

Jul. 11, 2006

U.S. Patent

L9114
:
NOILYDIIA0N aNY
NOSIHYANOD
1S3N03Y > 43AY]
WILSAS T4
A
i v# AVIdSIQ
HIAY
LNdLN0
Y ¥ / LNANI
HIAYT
NOILYOddY

US 7,076,624 B2

1

METHOD AND SYSTEM FOR PROVIDING
RESTRICTED ACCESS TO A STORAGE
MEDIUM

This is a continuation application of U.S. Application No.
10/032,467 filed Jan. 2, 2002 now U.S. Pat. No. 6,654,864,
which is a Divisional Application of U.S. Application No.
09/267,787 filed Mar. 15, 1999, now U.S. Pat. No. 6,336,
175.

FIELD OF THE INVENTION

The present invention relates to data storage and more
particularly to a method of providing restricted write access
on a data storage medium.

BACKGROUND OF THE INVENTION

In the past, operating systems restricted file access based
on three criteria. The first criterion relates to the physical
limitations of the storage device. For example, a CD-ROM
drive only provides read access and therefore is restricted to
read-only operation. The second relates to limitations of the
storage medium. For example, a CD is a read-only medium,
a CDR is a read/write medium but when a CD is full, the
writer becomes a read-only medium, and so forth. The third
relates to file access privileges. For example, in the UNIX
operating system a file is stored with a set of access
privileges including read and write privileges. Some files are
read only and others are read/write and so forth.

Unfortunately, these access privileges fail to adequately
provide protection for archival storage devices such as
magnetic tape or removable optical media.

An example of a popular operating system is Windows
NT®. Using Windows NT®, device drivers are hidden from
applications by a protected subsystem implementing a pro-
gramming and user interface. Devices are visible to user-
mode programs, which include protected subsystems, only
as named file objects controlled by the operating system
input/output (IO) manager. This architecture limits an
amount of knowledge necessary to implement device drivers
and applications. In order to provide reasonable perfor-
mance, the two separated systems, device drivers and appli-
cations, operate independently.

For example, when a write operation is requested by an
application, the request is made via a file object handle. The
application does not actually communicate with the storage
device nor does the device driver for that storage device
communicate with the application. Each communicates with
the operating system independently. Thus, when the write
command is issued for writing data to a device, the data is
stored in buffer memory while the destination device is
being accessed. A successful completion status is provided
to the application. When the destination storage device is
available, the stored data is written to the destination storage
device. When the storage device is unavailable or fails to
support write operations, the data is not successfully written.
An error message may result, but will not be directed toward
the application since it is not known to the device driver or
is inaccessible. For example, the application may have
terminated before the error occurs. Alternatively, no error
message results and when the buffer is flushed or when the
system is rebooted, the data is lost. Neither of these results
is acceptable in normal computer use.

Fortunately, most devices are easily verified as to their
capabilities. Read only devices are known as are read/write
devices. Because a CD-ROM drive never becomes a read/

20

25

30

35

40

45

50

55

60

65

2

write device, it is easily managed. When a device supports
both read/write media and read only media the problem
becomes evident.

In order better to highlight the problem, an example is
presented. When a hard disk is full, accessing a file results
in updating of file information relating to a last access date
and so forth, journaling. File access information is updated
each time a file is retrieved. The information requires no
extra memory within the hard disk and therefore, the status
of the hard disk, full or available disk space, is unimportant
since the new file access information overwrites previous
file access information. Thus, the file system writes to
storage media even when full, so long as the capability of
doing so exists.

When an archive data store is used with a data store
device, it is often desirable that it not be written to. There-
fore, accessing a file requires that the file access information
is not updated—journaling is not performed. Unfortunately,
when the data store device is accessed via a read/write file
object handle, updating of the file access information is
performed by the file system. As such, the data store is
altered even when this is not desired. Further, since a single
data store device accepts any number of different data stores
during a period of time when the file system is in continuous
operation, it is impractical if not impossible to remount the
data store device with a new data store device driver and a
new file object handle whenever the read/write privileges
change. Currently, there is no adequate solution to overcome
this problem.

In an attempt to overcome these and other limitations of
the prior art, it is an object of the present invention to
provide a method of limiting access privileges for a storage
medium that supports increased flexibility over those of the
prior art.

SUMMARY OF THE INVENTION

In accordance with the invention there is provided a
method of providing restricted access to a storage medium
in communication with a computer comprising the step of.

executing a file system layer on the computer, the file

system layer supporting a plurality of file system com-
mands;

executing a trap layer on the computer, the trap layer

logically disposed above the file system layer;
providing to the trap layer at least a disabled file system
command relating to the storage medium and supported
by the file system for the storage medium;
intercepting data provided to the file system layer includ-
ing an intercepted file system command;
comparing the intercepted file system command to each of
the at least a disabled file system command to produce
at least a comparison result; and,

when each of the at least a comparison result is indicative

of other than a match, providing the intercepted file
system command to the file system layer.

In some embodiments an application layer is in execution
logically above the trap layer such that the trap layer is
logically disposed between the application layer and the file
system layer; and when a comparison result from the at least
a comparison result is indicative of a match, providing an
error indication to the application layer. Preferably, the error
indication is provided from the trap layer.

In accordance with the invention there is further provided
a method of restricting access to a storage medium in
communication with a computer, the method comprising the
step of:

US 7,076,624 B2

3

executing a file system layer on the computer, the file
system layer supporting a plurality of file system com-
mands;

providing to the file,system layer at least a disabled file

system command for the storage medium, the disabled
file system command supported by the file system for
the storage medium, the at least a disabled file system
command being other than all write commands, other
than all read commands, and other than all write
commands and all read commands;

comparing file system commands provided to the file

system layer to each of the at least a disabled file
system command to produce at least a comparison
result; and,

when each of the at least a comparison result is indicative

of other than a match, executing the file system com-
mand.

In an embodiment the method also comprises the follow-
ing steps: providing an indication of a data write access
privilege for the entire logical storage medium, the data
write access privilege indicative of a restriction to alteration
of a same portion of each file stored on the logical storage
medium; and restricting file access to the logical storage
medium in accordance with the indication while allowing
access to free space portions of the same logical storage
medium.

In accordance with the invention there is also provided a
method of restricting access by a computer to a storage
medium other than a write once medium in communication
with the computer, the method comprising the steps of:
providing an indication of a data write access privilege for
the entire logical storage medium indicating a disabled
operation relating to alteration of a portion of each file stored
within the logical storage medium, the indication other than
a read only indication; and, restricting file access to each file
within the logical storage medium in accordance with the
same indication while allowing access to free space portions
of the same logical storage medium. In an embodiment the
indication comprises at least one of the following: write
access without delete, write access without rename; write
access without overwrite, and write access without changing
file access privileges.

In accordance with the invention there is also provided a
method of restricting access by a computer to a storage
medium other than a write once medium in communication
with the computer, the method comprising the steps of:
providing an indication of a data write access privilege for
the entire logical storage medium indicating a disabled
operation relating to alteration of data within the logical
storage medium, the indication other than a read only
indication, the disabled operations supported by the storage
medium; and restricting write access to data within the
logical storage medium in accordance with the same indi-
cation while allowing access to free space portions of the
same logical storage medium. A logical storage medium
consists of a single physical storage medium or a single
partition within a storage medium. Typically a disabled
operation relates to destruction of data stored within a
storage medium. Operations of this type include delete file,
overwrite file, and rename file.

The present invention is preferably applied to removable
storage media and more preferably to optical storage media
such as removable optical rewritable disks.

According to an aspect of the present invention, restricted
write access privileges for data stored within a data storage
medium are supported. Advantageously, access privileges of
this type allow write access to storage media or data files but

20

25

30

35

40

45

50

55

60

65

4

limit that access in certain respects. These restrictions permit
some level of control over a storage medium while provid-
ing some write privileges.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will now be
described in conjunction with the drawings in which:

FIG. 1 is a simplified block diagram of an NT® operating
system architecture during a process of opening a file is
shown;

FIG. 2 is a simplified block diagram of an NT® operating
system architecture during a process of IRP processing is
shown;

FIG. 3 is a simplified block diagram of an operating
system according to the invention;

FIG. 4 is a simplified block diagram of a system for
opening a file such as that shown in FIG. 1 modified
according to the invention;

FIG. 5 is a simplified flow diagram of a method of storing
data in a storage medium forming part of a system such as
that of FIG. 1;

FIG. 6 is a simplified flow diagram of a method of
providing software settable access privileges within Win-
dows NT®; and,

FIG. 7 is a simplified block diagram of the invention
wherein the file system layer includes means for performing
the functions of the trap layer.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1, a simplified block diagram of a
Windows NT® (NT) operating system architecture during a
process of opening a file is shown. NT drivers are hidden
from end users by an NT protected subsystem that imple-
ments an already familiar NT programming interface.
Devices are visible only as named file objects controlled by
the NT Input/Output (I0) Manager to user-mode programs
including protected subsystems,.

An NT protected subsystem, such as the Win32® sub-
system, passes 1O requests to the appropriate kernel-mode
driver through the IO system services. A protected sub-
system insulates its end users and applications from having
to know anything about kernel-mode components, including
NT drivers. In turn, the NT 10 Manager insulates protected
subsystems from having to know anything about machine
specific device configurations or about NT driver implemen-
tations.

The NT IO Manager’s layered approach also insulates
most NT drivers from having to know anything about the
following: whether an IO request originated in any particular
protected subsystem, such as Win32 or POSIX; whether a
given protected subsystem has particular kinds of-user-mode
drivers; and, the form of any protected subsystem’s 1O
model and interface to drivers.

The 10 Manager supplies NT drivers with a single 10
model, a set of kernel-mode support routines. These drivers
carry out IO operations, and a consistent interface between
the originator of an IO request and the NT drivers that
respond to it results. File system requests are a form of 10
request.

A subsystem and its native applications access an NT
driver’s device or a file on a mass-storage device through file
object handles supplied by the NT IO Manager. A sub-
system’s request to open such a file object and to obtain a
handle for IO to a device or a data file is made by calling the

US 7,076,624 B2

5

NT IO system services to open a named file, which has, for
example, a subsystem-specific alias (symbolic link) to the
kernel-mode name for the file object.

The NT IO Manager, which exports these system services,
is then responsible for locating or creating the file object that
represents the device or data file and for locating the
appropriate NT driver(s).

The system follows a process described below in accor-
dance with FIG. 1 for performing a file open operation. The
subsystem calls an NT IO system service to open a named
file. The NT IO Manager calls the Object Manager to look
up the named file and to help it resolve any symbolic links
for the file object. It also calls the Security Reference
Monitor to check that the subsystem has the correct access
rights to open that file object.

If the volume is not yet mounted, the 10 Manager
suspends the open request, calling one or more NT file
systems until one of them recognises the file object as some
thing it has stored on one of the mass storage devices the file
system uses. When the file system has mounted the volume,
the 10 Manager resumes the request.

The IO Manager allocates memory (a RAM Cache) for
and initialises an IRP (IO request packet) for the open
request. To NT drivers, an open is equivalent to a “create”
request. The IO Manager calls the file system driver, passing
it the IRP. The file system driver accesses its 1O stack
location in the IRP to determine what operation to carry out,
checks parameters, determines if the requested file is in
cache memory, and, if not sets up the next lower driver’s 10
stack location in the IRP.

Both drivers process the IRP and complete the requested
10 operation, calling kernel-mode support routines supplied
by the IO Manager and by other NT components. The
drivers return the IRP to the IO Manager with the 10 status
block set in the IRP to indicate whether the requested
operation succeeded and/or why it failed. The IO Manager
gets the 10 status from the IRP, so it can return status
information through the protected subsystem to the original
caller. The IO Manager frees the completed IRP.

The 10 Manager returns a handle for the file object to the
subsystem if the open operation was successful. If there was
an error, it returns appropriate status information to the
subsystem.

After a subsystem successfully opens a file object that
represents a data file, a device, or a volume, the subsystem
uses the returned file object handle to request that device for
10 operations typically in the form of read, write, or device
10 control requests. These operations are carried out by
calling the 10 System services. The IO Manager routes these
requests as IRPs sent to appropriate NT drivers.

Referring to FIG. 2, a simplified block diagram of an
NT® operating system architecture during a process of IRP
processing is shown. The IO Manager calls the file system
driver (FSD) with the IRP it has allocated for the sub-
system’s read/write request. The FSD accesses its 1O stack
location in the IRP to determine what operation it should
carry out.

The FSD sometimes breaks the originating request into
smaller requests by calling an IO support routine one or
more times to allocate IRPs, which are returned to the FSD
with zero-filled 10 stack location(s) for lower-level
driver(s). At its discretion, the FSD can reuse the original
IRP, rather than allocating additional IRPs as shown in FIG.
2, by setting up the next-lower driver’s 1O allocation in the
original IRP and passing it on to lower drivers.

For each driver-allocated IRP, the FSD calls an 1O support
routine to register an FSD-supplied completion routine so

20

25

30

35

40

45

50

55

60

65

6

the driver is able to determine whether a lower driver
satisfied the request and free each driver allocated IRP when
lower drivers have completed it. The IO Manager calls the
FSD-supplied completion routine whether each driver-allo-
cated IRP is completed successfully, with an error status, or
cancelled. A higher-level NT driver is responsible for freeing
any IRP it allocates and sets up on its own behalf for
lower-level drivers. The IO Manager frees the IRPs that it
allocates after all NT drivers have completed them. Next, the
FSD calls an 10 support routine to access the next lower-
level driver’s 1O stack location in its FSD-allocated IRP in
order to set up the request for the next-lower driver, which
happens to be the lowest-level driver in FIG. 2. The FSD
then calls an IO support routine to pass that IRP on to the
next driver.

When it is called with the IRP, the physical device driver
checks its IO stack location to determine what operation
(indicated by the IRP MJ XXX function code) it should
carry out on the target device, which is represented by the
device object in its 1O stack location and passed with the IRP
to the driver. This driver can assume that the IO Manager has
routed the IRP to an entry point that the driver defined for
the IRP—MJ XXX operation (here IRP MJ READ or IRP
MJ WRITE) and that the higher-level driver has checked the
validity of other parameters for the request.

If there were no higher-level driver, such a device driver
would check whether the input parameters for an IRP MJ
XXX operation are valid. If they are, a device driver usually
calls 10O support routines to tell the IO Manager that a device
operation is pending on the IRP and to either queue or pass
the IRP on to another driver-supplied routine that accesses
the target device in the form of a physical or logical device
such as a disk or a partition on a disk.

The 10 Manager determines whether the device driver is
already busy processing another IRP for the target device,
queues the IRP if it is, and returns. Otherwise, the 10
Manager routes the IRP to a driver-supplied routine that
starts the IO operation on its device.

When the device interrupts, the driver’s interrupt service
routine {ISR) does only as much work BS as is necessary to
stop the device from interrupting and to save, necessary
context about the operation. The ISR then calls an IO
support routine with the IRP to queue a driver-supplied DPC
routine to complete the requested operation at a lower
hardware priority than the ISR.

When the driver’s DPC gets control, it uses the context as
passed in the ISRs call to IoRequestDpc to complete the 10
operation. The DPC calls a support routine to dequeue the
next IRP when present and to pass that IRP on to the
driver-supplied routine that starts 1O operations on the
device. The DPC then sets status about the just completed
operation in the IRPs 10O status block and returns it to the 10
Manager with loCompleteRequest.

The 10 Manager zeroes the lowest-level driver’s 10 stack
location in the IRP and calls the file system’s registered
completion routine with the FSD-allocated IRP. This
completion routine checks the IO status block to determine
whether to retry the request or to update any internal state
maintained about the original request and to free its driver-
allocated IRP. The file system often collects status Informa-
tion for all driver-allocated IRPs it sends to lower-level
drivers in order to set 1Q status and complete the original
IRP. When it has completed the original IRP, the IO Manager
returns NT status, the subsystem’s native function, to the
original requester of the IO operation.

FIG. 2 also shows two IO stack locations in the original
IRP because it shows two NT drivers, a file system driver

US 7,076,624 B2

7

and a mass-storage device driver. The 10 Manager gives
each driver in a chain of layered NT drivers an IO stack
location of its own in every IRP that it sets up. The
driver-allocated IRPs do not necessarily have a stack loca-
tion for the FSD that created them. Any higher-level driver
that allocates IRPs for lower-level drivers also determines
how many 10 stack locations the new IRPs should have,
according to the StackSize value of the next-lower driver’s
device object.

An NT file system driver accesses the file object through
its 1O stack location in IRPs. Other NT drivers usually
ignore the file object.

The set of IRP major and minor function codes that a
particular NT driver handles are sometimes device-type-
specific. However, NT device and intermediate drivers usu-
ally handle the following set of basic requests:

IRP MJ CREATE—open the target device object, indi-
cating that it is present and available for IO operations;

IRP MJ READ—transfer data from the device;

IRP MJ WRITE—transfer data to the device;

IRP MJ DEVICE CONTROL—set up or reset the device
according to a system-defined, device-specific 10 control
code; and

IRP MJ CLOSE~close the target device object.

In general, the IO Manager sends IRPs with at least two
10 stack locations to device drivers of mass-storage devices
because an NT file system is layered over NT drivers for
mass-storage devices. The IO Manager sends IRPs with a
single stack location to any physical device driver that has
no driver layered above it.

Referring to FIG. 3, a block diagram of an operating
system is shown. The block diagram presents a simplified
view of operating system functionality according to the
invention. An application layer for supporting application
execution communicates with an input/output layer of the
computer. The input/output layer includes a display and a
file system layer. The application layer communicates with
the file system layer for, performing read operations and
write operations with storage media. Disposed between the
application layer and the file system layer is a trap layer also
referred to as a filter layer. Each file system access request
that is transmitted from the application layer to the file
system layer is intercepted by the trap layer. In the trap layer
restrictions relating to access privileges are implemented.
For example, some requests are blocked and error messages
are returned to the application layer. Other requests are
modified and the modified request passed onto the file
system. When a data store is read only, a request to open a
file for read write access is modified to an open file for
read-only access; a request to delete a file is blocked and an
error message is returned. The use of a trap layer is appli-
cable when the present invention is implemented within an
existing operating system such as Windows NT®. Alterna-
tively, an operating system supporting restricted write access
is designed and restrictions relating to access privileges are
implemented within the file system layer.

Referring to FIG. 4, a simplified block diagram of open-
ing a file within Windows NT® according to the invention
is shown. The diagram is based on the diagram of FIG. 1.
The thick black line represents the trap layer or filter layer
for preventing some file system operations from passing
from the application layer to the file system layer. Accord-
ingly, a data store device operates as a read/write device with
a single device driver. The trap layer prevents write opera-
tions or, alternatively, other predetermined operations from
being performed on a specific data store. The trap layer
achieves this by blocking some requests and by modifying
other requests. In this way, some operations are prevented
without requiring modifications to existing applications
Thus, one data store may be read only while another is

20

25

30

35

40

45

50

55

60

65

8

read/write. Unlike prior art implementations, an application
requesting a write operation to a data store that is read-only,
receives an accurate and appropriate error message. There is
no data lost by the device driver and, in fact, the device
driver is freed of the trouble of dealing with file system
commands which cannot be completed.

Also, the use of the trap layer allows for implementation
of more complicated file access privileges based on data
stored within each individual storage medium. For example,
a storage medium may indicate read-write access but may
not support delete operations. Device drivers perform low
level commands such as read and write. Delete, is a write
operation, the device driver performing write operations to
obfuscate of overwrite a file. As is evident, the device driver
supports delete operations as does any read/write data store.
However, by indicating to the trap layer that delete opera-
tions are not supported, all delete requests passed from the
application layer for the specific data stove are intercepted
by the trap layer and an error message is returned to the
application layer. No delete operation for a file is passed to
the file system layer and therefore, the device driver does not
perform the write operations for obfuscating or overwriting
the file because none is received. It is evident that preventing
file deletion is advantageous for protecting archived data and
data histories.

Another operation which is advantageously restricted is
overwriting of files. When a request is made to overwrite a
file, typically the data within the file is overwritten. Over-
writing of file data is a simple work around to perform a file
delete when that operation is blocked. Alternatively in some
devices, the data to overwrite is written to an unused portion
of a storage medium and an address of the file data within
a file allocation table is changed. The storage locations of the
old file data are then considered free. Preventing data
overwrite is performed according to the invention by modi-
fying requests or blocking requests as necessary: Further, by
trapping requests to overwrite file data according to the
invention, a user friendly error message becomes possible.
When an application,provides a request to overwrite a file,
an error message indicating that overwrite is not permitted
and that a file name is needed to save the data is provided.
The trap layer, upon receiving the file name from the error
message, modifies the request in accordance therewith and
in accordance with permitted operations and passes the
modified request to the file system layer. Accordingly, data
integrity is preserved with minimal inconvenience to users
of the system.

It is also useful to restrict access to file access permis-
sions. Often, permissions are global across a storage
medium and altering of the permissions is not desirable.
Still, many operating systems provide for file and storage
medium related access privileges. These are modifiable at
any time. Since privileges are generally static, there are
advantages to setting up privileges for a storage medium
such that during normal operation and with normal file
system operations, the privileges are static. Preferably, there
is at least a way to modify the global privileges in case it is
desirable to do so. Preventing alteration of privileges pre-
vents individuals having access to files from modifying
access privileges in any way.

Another operation that is usefully restricted is overwriting
of zero length files. Some operations within some applica-
tions create a zero length file and then overwrite it. Thus
preventing overwriting of zero length files directly affects
those applications. An example of such an application and
operation is the “save as” command in Microsoft Word®.
Thus, preventing overwriting of zero length files effectively
prevents “save as” from functioning on the associated
medium.

US 7,076,624 B2

9

Similarly, renaming a file is useful for obfuscating data.
Preventing renaming of files prevents hiding existing files or
making them more difficult to locate. For example, changing
a client’s information file name from “Client 101 Informa-
tion” to “To Do Feb. 18” would make the file hard to locate.
Thus, rename is an operation that it is desirable to restrict.
Reasons for restricting the other listed operations are evi-
dent. Further, restricting other operations may also be advan-
tageous and the present application is not limited to these
operations.

Above mentioned operations which are advantageously
restricted include overwriting files, changing file access
permissions and medium access privileges, renaming files,
formatting a medium and so forth. For example, a medium
that does not allow any of the above mentioned operations
provides a complete archival history of the medium’s con-
tent and prevents alteration or deletion of the data. Such a
medium is very useful for backing up office files or elec-
tronic mail.

Referring to FIG. 5, a flow diagram of a method of storing
data in a storage medium forming part of a system such as
that of FIG. 3 is shown. An application in execution on the
system seeks to store a data file on a storage medium within
the file system layer of the system. A request and data for
storage within the file is transmitted from the application
layer to the file system layer. The request includes an
operation and data relating to a destination storage medium
on which to store the data. The trap layer intercepts the
request and the data and determines whether the storage
medium selected supports the operation. The trap layer is a
transparent trap layer, which intercepts requests transpar-
ently to the user and transparently to a computer application
invoking the requests. When the storage medium supports
the operation, the request and the data is passed on to the file
system layer. When necessary, the request is modified prior
to provision to the file system layer. In the file system layer
the operation is conducted according to normal file system
layer procedures. When the storage medium does not sup-
port the operation in its original or a modified form, the trap
layer returns an indication of this to the application layer.
The operation and the data are not passed onto the file
system layer. This provides additional access privilege func-
tionality.

Referring to FIG. 6, a simplified flow diagram of a method
of providing software settable access privileges within Win-
dows NT® is shown. A storage medium is mounted within
a computer system. The storage medium has stored thereon
data relating to access privileges for the storage medium.
Upon mounting the storage medium, data relating to physi-
cal limitations of the read/write device are loaded into the
device driver for that device within the file system layer. The
limitations are recognised by the system software. Also upon
mounting the storage medium, the data relating to access
privileges for the storage medium are loaded into the trap
layer. The trap layer limits operations performed on the
storage medium to-those supported by the read/write device
by limiting the requests passed onto the file system layer or,
when the trap layer forms part of the file system layer, by
filtering and/or moditying the requests. The data relating to
access privileges for the storage medium are used to limit
those requests provided to the file system layer.

When the storage medium is a data store for archiving
purposes, there are evident advantages to treating the storage
medium as a read-only storage medium. For example, once
the-data store is full, setting it to read-only allows its use
without risking tampering or accidental modification. There-
fore, media specific access privileges are advantageous.

Referring to FIG. 7, a simplified block diagram of the
invention wherein the file system layer includes means for
performing the functions of the trap layer is shown. Such an

20

30

35

40

45

50

55

60

65

10

embodiment, operates in a similar fashion to those described
above. The file system receives all file access requests and
compares them to those that are not permitted. When an
access command is not permitted on an indicated storage
medium, an error message is returned to the application
layer. When an access command is permitted, it is performed
on the appropriate storage medium. The access command
may be that requested or, alternatively, a modified form of
the requested command resulting in a supported operation.

The term logical storage medium is used herein and in the
claim that follow to designate either a physical storage
medium or a portion of physical storage medium that is
treated by the operating system as a separate storage
medium. Thus, a partitioned hard disk with two partitions
consists of one physical storage medium and two logical
storage media.

Numerous other embodiments of the invention may be
envisaged without departing from the spirit and scope of the
invention.

What is claimed is:

1. A method of applying an operation access privilege to
at least a logical portion of a logical storage medium in
communication with a computer, the method comprising the
steps of:

(a) providing an operation access privilege indicative of at
least one of an enabled operation and/or a restricted
operation to be performed on at least one logical
portion of a logical storage medium;

(b) associating said operation access privilege with at
least one logical portion of said logical storage
medium,;

(c) intercepting in a trap layer an attempted operation on
said at least one logical portion identified by at least one
data identifier, wherein said intercepting occurs regard-
less of an identity of a user attempting said attempted
operation, and transparently to the user and transpar-
ently to a computer application invoking said opera-
tion; and

(d) at least one of allowing said attempted operation if
matching said enabled operation, modifying and allow-
ing said modified attempted operation, and/or denying
said attempted operation if matching said restricted
operation.

2. The method as defined in claim 1, wherein said at least
one logical portion of said logical storage medium com-
prises at least one of a volume, a partition, a directory, a
special file, and/or a file.

3. The method as defined in claim 1, wherein said at least
one logical portion of said logical storage medium com-
prises an entire logical storage medium.

4. The method as defined in claim 1, wherein said at least
one data identifier comprises at least one of a file name, a file
mask, a special file, and/or a directory.

5. The method as defined in claim 1, wherein said
operations comprise at least one of reading, executing,
appending, creating new objects, deleting, renaming, mov-
ing, overwriting, modifying attributes, and/or modifying
data object security.

6. The method as defined in claim 1, further comprising:

(e) applying a plurality of operation access privileges to
said at least one data identifier.

7. The method as defined in claim 1, further comprising:

(e) applying a plurality of operation access privileges to
said logical portion of said logical storage medium.

8. The method as defined in claim 1, further comprising:

(e) applying said operation access privilege to said logical
storage medium wherein said logical storage medium is

US 7,076,624 B2

11

itself a logical portion of another logical storage
medium, and wherein a logical portion of said another
logical storage medium is specified by at least one data
identifier.
9. The method as defined in claim 8, wherein said at least
one data identifier comprises a free space portion.
10. The method as defined in claim 8, wherein said at least
one data identifier comprises newly created data.
11. The method according to claim 1, wherein said
operation access privilege comprises a file input/output (/O)
operation access privilege.
12. A system for applying an operation access privilege to
at least a logical portion of a logical storage medium in
communication with a computer, the system comprising:
providing means for providing an operation access privi-
lege indicative of at least one of an enabled operation
and/or a restricted operation to be performed on at least
a logical portion of a logical storage medium;

associating means for associating said operation access
privilege with at least one logical portion of said logical
storage medium;

interception means for intercepting in a trap layer an

attempted operation on said at least one logical portion
identified by at least one data identifier, wherein said
interception means performs regardless of an identity
of a user attempting said attempted operation, and
transparently to the user and transparently to a com-
puter application invoking said operation; and

at least one of allowing means for allowing said attempted

operation if matching said enabled operation, modify-
ing and allowing means for modifying and allowing
said modified attempted operation, and/or denial means
for denying said attempted operation if matching said
restricted operation.

13. The system as defined in claim 12, wherein said at
least one logical portion of said logical storage medium
comprises at least one of a volume, a partition, a directory,
a special file, and/or a file.

14. The system as defined in claim 12, wherein said at
least one logical portion of said logical storage medium
comprises an entire logical storage medium.

15. The system as defined in claim 12, wherein said at
least one data identifier comprises at least one of a file name,
a file mask, a special file, and/or a directory.

16. The system as defined in claim 12, wherein said
operations comprise means for at least one of reading,
executing, appending, creating new objects, deleting,
renaming, moving, overwriting, modifying attributes, and/or
modifying data object security.

17. The system as defined in claim 12, further comprising:

means for applying a plurality of operation access privi-

leges to said at least one data identifier.

18. The system as defined in claim 12, further comprising:

means for applying a plurality of operation access privi-

leges to said portion of said logical storage medium.

19. The system as defined in claim 12, further comprising:

means for applying said operation access privilege to said

logical storage medium wherein said logical storage
medium is itself a logical portion of another logical
storage medium, and wherein a logical portion of said
another logical storage medium is specified by at least
one data identifier.

20. The system as defined in claim 12, wherein said at
least one data identifier comprises a free space portion.

21. The system as defined in claim 12, wherein said at
least one data identifier comprises newly created data.

20

25

30

35

40

45

50

55

60

65

12

22. A computer program product embodied on a computer
readable media wherein the computer program product
comprises logic which when executed performs the follow-
ing method of applying an operation access privilege to at
least a logical portion of a logical storage medium in
communication with a computer, the method comprising the
steps of:

(a) providing an operation access privilege indicative of at
least one of an enabled operation and/or a restricted
operation to be performed on at least a logical portion
of a logical storage medium;

(b) associating said operation access privilege with at
least one logical portion of said logical storage
medium,;

(c) intercepting in a trap layer an attempted operation on
said at least one logical portion identified by at least one
data identifier, wherein said intercepting occurs regard-
less of an identity of a user attempting said attempted
operation, and transparently to the user and transpar-
ently to a computer application invoking said opera-
tion; and

(d) at least one of allowing said attempted operation if
matching said enabled operation, modifying and allow-
ing said modified attempted operation, and/or denying
said attempted operation if matching said restricted
operation.

23. The computer program product as defined in claim 22,
wherein said at least one logical portion of said logical
storage medium comprises at least one of a volume, a
partition, a directory, a special file, and/or a file.

24. The computer program product as defined in claim 22,
wherein said at least one logical portion of said logical
storage medium comprises an entire logical storage medium.

25. The computer program product as defined in claim 22,
wherein said at least one data identifier comprises at least
one of a file name, a file mask, a special file, and/or a
directory.

26. The computer program product as defined in claim 22,
wherein said operations comprise at least one of reading,
executing, appending, creating new objects, deleting,
renaming, moving, overwriting, modifying attributes, and/or
modifying data object security.

27. The computer program product as defined in claim 22,
wherein the method further comprises:

(e) applying a plurality of operation access privileges to

said at least one data identifier.

28. The computer program product as defined in claim 22,
wherein the method further comprises:

(e) applying a plurality of operation access privileges to

said portion of said logical storage medium.

29. The computer program product as defined in claim 22,
wherein the method further comprises:

(e) applying said operation access privilege to said logical
storage medium wherein said logical storage medium is
itself a logical portion of another logical storage
medium, and wherein a logical portion of said another
logical storage medium is specified by at least one data
identifier.

30. The computer program product as defined in claim 22,
wherein said at least one data identifier comprises a free
space portion.

31. The computer program product as defined in claim 22,
wherein said at least one data identifier comprises newly
created data.

