a2 United States Patent

US006654864B2

10y Patent No.: US 6,654,864 B2

Shaath et al. 45) Date of Patent: Nov. 25, 2003
’
(549) METHOD AND SYSTEM FOR PROVIDING 4947318 A * 8/1990 Mineoccveervenenene 713/193
RESTRICTED ACCESS TO A STORAGE 4,958314 A 9/1990 Imai et al.
MEDIUM 4,975,898 A 12/1990 Yoshida
5,214,627 A 5/1993 Nakashima et al.
(75) Inventors: Kamel Shaath, Kanata (CA); Jonathan 5,434,562 A 7/1995 Reardon
Gossage, Nepean (CA); Tony Walker, 5495533 A * 2/1996 Linchan et al. 3801277
Stittsville (CA); Yasser Lulu, Ottawa 5,537,636 A 7/1996 Uchida et al.
(CA); Fu Yaqun, Nepean (CA) 5,708,650 A 1/1998 Nakashima et al.
’ ’ 5,717,683 A 2/1998 Yoshimoto et al.
(73) Assignee: Kom Networks, Inc., Kanata (CA) 5,778,365 A 7/1998 Nishiyama
5,825,728 A 10/1998 Yoshimoto et al.
(*) Notice: Subject to any disclaimer, the term of this 5,850,566 A 12/1998 Solan et al.
patent is extended or adjusted under 35 5,949,601 A * 9/1999 Braithwaite et al. 360/60
5,978,914 A * 11/1999 Carley et al. 713/200
US.C. 154(b) by O days. 6044373 A * 3/2000 Gladney et al. . .. 707/10
6,286,087 B1 * 9/2001 Ito et al. ...ccevvvvrevnnnnnnn. 711/111
(21) Appl. No.: 10/032,467 6,336,187 BL * 1/2002 Kern et al. ...ooovven...... 713/161
(22) Filed: Jan. 2, 2002
* cited by examiner
(65) Prior Publication Data
US 2002/0078295 Al Jun. 20, 2002 .
/ 2 Primary Examiner—Hiep T. Nguyen
Related U.S. Application Data (74) Attorney, Agent, or Firm—Venable LLP; Ralph P.
Albrecht; Jung H. Kim
(62) Division of application No. 09/267,787, filed on Mar. 15,
1999, now Pat. No. 6,336,175. 57 ABSTRACT
(30) Foreign Application Priority Data A method of restricting file access is disclosed wherein a set
of file write access commands are determined from data
Jul. 31, 1998 (CA) eoovieiiiiiiieicciicceiecie e 2244626 stored within a storage medium. The set of file write access
51) Int. CL7 e GO6F 12/14 commands are for the entire storage medium. Any matchin;
g y g
(52) US.Cl oo 711/163; 707/9 file write access command provided to the file system for

(58) Field of Search 711/163; 707/9;

713/200

References Cited
U.S. PATENT DOCUMENTS
4,757,533 A

(56)

7/1988 Allen et al.

that storage medium results in an error message. Other file
write access commands are, however, passed onto a device
driver for the storage medium and are implemented. In this
way commands such as file delete and file overwrite can be
disabled for an entire storage medium.

9 Claims, 7 Drawing Sheets

/"Subsystem

return handle

andlor
/ NTSTATUS

user mode

open ()
{file objiw/

kernelmode

look up objectname

request

Object

/O System Services

i

Manager

/< check access rights

Security

110 Mana e<

}—————— atliocate

IRP

@ locate

file object

file system

file system

I
IRP (:)
// - 4\ callappropriate
@ i 1O stack drivers with IRP
location J KOM Fitt
p lecation | v itter
f;ePe 71/0 stack |0 file system (o)
i location ' 2 driver arr
on = y out
requested

©®

return IRP with
11O Status

opy /O Status
to subsystem
address space

evlce driver

compiete operation,

operatio

mass-storage devices

US 6,654,864 B2

Sheet 1 of 7

Nov. 25, 2003

U.S. Patent

A

snieys O/l
Yyl m d | uinial
‘uoljesado ajajdwond

S921A9p abBesoy)s-sse w

aoeds ssaippe
wajlshsqgns o}

snje}g O/} Adoa °

DO
.

,

.

_ JOAIUP 3D21ADP

. -
‘uoljeldado
patsanbas
1no Aidedod -~ .

1aAldp
wayshs ajy

d ¥l Yirm siaAlIp
ajeiudosdde |je2- 2

(©

d il
?jeso|e-- " °

©

—

walshs 3l

wajsAs ajij

.~ 2128lqo ayyy

31e 20| @

Ailanosag

s)ybli ssaos0e ¥oayos- @ S901AJaS WalsAS O/l

1abeue ¢

- uoneosol | gy
sels
A2EIS ot — 291y

" \- — uoneso} L @

quum‘@.::“ -

laBeue |y O/l

1238lqo0 .

aweu josafqo dn yoo|.

. .1seanbau
-+ " (329alqo ajy)

@ uado

SNLYLSLN
Jlo/pue

apue Yy UlN}ad ‘e
yd

apow |2ulay

Ipow sesn

N

walsAsqgnsg

U.S. Patent

Nov. 25, 2003

- o

TR i o)

Sheet 2 of 7

LRI

r};?mkeé
s

i

5

sipvice aomd roturs}

*wrﬁ”““wh““ﬂ“pr

arvies HHEITH

e T
5 s,

fnetarrantrpStackloos i

o

y

xs

sy

AN
i

US 6,654,864 B2

WO States Block

B

WP M ¥R
IRP RN MHE

BFGUrTenis

Poutivdeeliject

HirFiathiact

US 6,654,864 B2

Sheet 3 of 7

Nov. 25, 2003

U.S. Patent

€ 'old
HIAVT .t » YAV
dvaL” WALSAS
/ EalE
< >
N AY1dSIa
NOILYOTddY

HIAY
IndLno
1NdNI

US 6,654,864 B2

Sheet 4 of 7

Nov. 25, 2003

U.S. Patent

s82iAap aberro)s-sse w

193114 WO

wajyshks a|ly

waysAs ajyy

Ajlinosaes

olyesado
pajsanbal
1no Aileo”

e
joalqo ay

v 'Ol

aoseds ssatppe
wajysAsqgns o)

snieys O/l f_ou_e

snjeis O/l
yiuim g4y urnga
‘uoljelado 3aje|jdw oo

ioAplp mu_>w_u‘\

19 AlIp d
woayshs ajl}

AT

,‘ uoijedro| |
S ELIEN-VIEN mn_mw_w

[uoljeso| |
"'yoeis Qi “ \@
/ dyl \\

d ol i}
ajeosojje

D
B

i

d Yl YL M SI3AIIP
ajersdosdde jjed

19Beuep o/
2}ed 0| @

=

s}ybByll ssaooe y523Yy?2

©)

JabBbeue
joafqo

V\\\mmo_?_mw weisAs o/l

saweujldalqo dn 3oo)

apo wlauJay

apoiw J1asn

1sanbaa SNLVLSILIN

\\\\\\qﬂ\m_no aly) joj/pue
uado dlpuey uinyai
© B,

/\ Em“m\ﬂwn:wAl\

US 6,654,864 B2

Sheet 5 of 7

Nov. 25, 2003

U.S. Patent

NOILYDITddY OL ¥O¥H3 ANIS

§'old
EEAEle
301A30 0L ¥O
SEIND
W3LSAS 3714 01
1S3N03 AJIGOW 153n03Y 3qIACYd

1S3n03y

Q3i41aon 140ddNs
34 WNIQ3aw
153n03d JOVHOLS

NVO $30d

1S3N03Y Ld3IOHILNI

3OVH0LS VLVA 304
1S3ND3d 3AIN0dd

US 6,654,864 B2

Sheet 6 of 7

Nov. 25, 2003

U.S. Patent

994

G 'Old 40 GOHLIW WHOd4d3d

J3AVIWILSAS 3114 IHL ANV
d3AVT
dvdl 3HL 40 3INO Ol V.1VQ 30IA0Hd

WNIa3n
JOVIOLS A3LNNOW JFHL AG d31H04dNS
S1S3N03Y
ONININYTL3A NI 3SN Y04 V1va dv3ad

SNOILOIYLS3H SS300V ININY313d
OL WNIJ3W 39vJ0LS NO V.Lva QV3y

WNIJ3W 3IOVHOLS LNNOW

US 6,654,864 B2

Sheet 7 of 7

Nov. 25, 2003

U.S. Patent

L '9ld
NOILYOIJIdOW aNY
NOSINYANOD
1SN0 > YIAVT
W3LSAS 3714
A
> AV1dSIQ
HIAYT
LN4LN0
Y v I 10N
NEIC
NOILYDITddY

US 6,654,864 B2

1

METHOD AND SYSTEM FOR PROVIDING
RESTRICTED ACCESS TO A STORAGE
MEDIUM

This application is a divisional of U.S. application Ser.
No. 09/267,787, filed Mar. 15, 1999, now U.S. Pat. No.
6,336,175.

FIELD OF THE INVENTION

The present invention relates to data storage and more
particularly to a method of providing restricted write access
on a data storage medium.

BACKGROUND OF THE INVENTION

In the past, operating systems restricted file access based
on three criteria. The first criterion relates to the physical
limitations of the storage device. For example, a CD-ROM
drive only provides read access and therefore is restricted to
read-only operation. The second relates to limitations of the
storage medium. For example, a CD is a read-only medium,
a CDR is a read/write medium but when a CD is full, the
writer becomes a read-only medium, and so forth. The third
relates to file access privileges. For example, in the UNIX
operating system a file is stored with a set of access
privileges including read and write privileges. Some files are
read only and others are read/write and so forth.

Unfortunately, these access privileges fail to adequately
provide protection for archival storage devices such as
magnetic tape or removable optical media.

An example of a popular operating system is Windows
NT®. Using Windows NT®, device drivers are hidden from
applications by a protected subsystem implementing a pro-
gramming and user interface. Devices are visible to user-
mode programs, which include protected subsystems, only
as named file objects controlled by the operating system
input/output (I0) manager. This architecture limits an
amount of knowledge necessary to implement device drivers
and applications. In order to provide reasonable
performance, the two separated systems, device drivers and
applications, operate independently.

For example, when a write operation is requested by an
application, the request is made via a file object handle. The
application does not actually communicate with the storage
device nor does the device driver for that storage device
communicate with the application. Each communicates with
the operating system independently. Thus, when the write
command is issued for writing data to a device, the data is
stored in buffer memory while the destination device is
being accessed. A successful completion status is provided
to the application. When the destination storage device is
available, the stored data is written to the destination storage
device. When the storage device is unavailable or fails to
support write operations, the data is not successfully written.
An error message may result, but will not be directed toward
the application since it is not known to the device driver or
is inaccessible. For example, the application may have
terminated before the error occurs. Alternatively, no error
message results and when the buffer is flushed or when the
system is rebooted, the data is lost. Neither of these results
is acceptable in normal computer use.

Fortunately, most devices are easily verified as to their
capabilities. Read only devices are known as well as are
read/write devices. Because a CD-ROM drive never
becomes a read/write device, it is easily managed. When a
device supports both read/write media and read only media
the problem becomes evident.

10

15

20

25

30

35

40

45

50

55

60

65

2

In order better to highlight the problem, an example is
presented. When a hard disk is full, accessing a file results
in updating of file information relating to a last access date
and so forth, journaling. File access information is updated
each time a file is retrieved. The information requires no
extra memory within the hard disk and therefore, the status
of the hard disk, full or available disk space, is unimportant
since the new file access information overwrites previous
file access information. Thus, the file system writes to
storage media even when full, so long as the capability of
doing so exists.

When an archive data store is used with a data store
device, it is often desirable that it not be written to.
Therefore, accessing a file requires that the file access
information is not updated—journaling is not performed.
Unfortunately, when the data store device is accessed via a
read/write file object handle, updating of the file access
information is performed by the file system. As such, the
data store is altered even when this is not desired. Further,
since a single data store device accepts any number of
different data stores during a period of time when the file
system is in continuous operation, it is impractical if not
impossible to remount the data store device with a new data
store device driver and a new file object handle whenever the
read/write privileges change. Currently, there is no adequate
solution to overcome this problem.

In an attempt to overcome these and other limitations of
the prior art, it is an object of the present invention to
provide a method of limiting access privileges for a storage
medium that supports increased flexibility over those of the
prior art.

SUMMARY OF THE INVENTION

In accordance with the invention there is provided a
method of providing restricted access to a storage medium
in communication with a computer comprising the step of:

executing a file system layer on the computer, the file

system layer supporting a plurality of file system com-
mands;

executing a trap layer on the computer, the trap layer

logically disposed above the file system layer;
providing to the trap layer at least a disabled file system
command relating to the storage medium and supported
by the file system for the storage medium;
intercepting data provided to the file system layer includ-
ing an intercepted file system command;
comparing the intercepted file system command to each of
the at least a disabled file system command to produce
at least a comparison result; and,

when each of the at least a comparison result is indicative

of other than a match, providing the intercepted file
system command to the file system layer.

In some embodiments an application layer is in execution
logically above the trap layer such that the trap layer is
logically disposed between the application layer and the file
system layer; and when a comparison result from the at least
a comparison result is indicative of a match, providing an
error indication to the application layer. Preferably, the error
indication is provided from the trap layer.

In accordance with the invention there is further provided
a method of restricting access to a storage medium in
communication with a computer, the method comprising the
step of:

executing a file system layer on the computer, the file

system layer supporting a plurality of file system com-
mands;

US 6,654,864 B2

3

providing to the file system layer at least a disabled file
system command for the storage medium, the disabled
file system command supported by the file system for
the storage medium, the at least a disabled file system
command being other than all write commands, other
than all read commands, and other than all write
commands and all read commands;

comparing file system commands provided to the file

system layer to each of the at least a disabled file
system command to produce at least a comparison
result; and, when each of the at least a comparison
result is indicative of other than a match, executing the
file system command.

In an embodiment the method also comprises the follow-
ing steps: providing an indication of a data write access
privilege for the entire logical storage medium, the data
write access privilege indicative of a restriction to alteration
of a same portion of each file stored on the logical storage
medium; and restricting file access to the logical storage
medium in accordance with the indication while allowing
access to free space portions of the same logical storage
medium.

In accordance with the invention there is also provided a
method of restricting access by a computer to a storage
medium other than a write once medium in communication
with the computer, the method comprising the steps of:
providing an indication of a data write access privilege for
the entire logical storage medium indicating a disabled
operation relating to alteration of a portion of each file stored
within the logical storage medium, the indication other than
a read only indication; and, restricting file access to each file
within the logical storage medium in accordance with the
same indication while allowing access to free space portions
of the same logical storage medium. In an embodiment the
indication comprises at least one of the following: write
access without delete, write access without rename; write
access without overwrite, and write access without changing
file access privileges.

In accordance with the invention there is also provided a
method of restricting access by a computer to a storage
medium other than a write once medium in communication
with the computer, the method comprising the steps of:
providing an indication of a data write access privilege for
the entire logical storage medium indicating a disabled
operation relating to alteration of data within the logical
storage medium, the indication other than a read only
indication, the disabled operations supported by the storage
medium; and restricting write access to data within the
logical storage medium in accordance with the same indi-
cation while allowing access to free space portions of the
same logical storage medium. A logical storage medium
consists of a single physical storage medium or a single
partition within a storage medium. Typically a disabled
operation relates to destruction of data stored within a
storage medium. Operations of this type include delete file,
overwrite file, and rename file.

The present invention is preferably applied to removable
storage media and more preferably to optical storage media
such as removable optical rewritable disks.

According to an aspect of the present invention, restricted
write access privileges for data stored within a data storage
medium are supported. Advantageously, access privileges of
this type allow write access to storage media or data files but
limit that access in certain respects. These restrictions permit
some level of control over a storage medium while provid-
ing some write privileges.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will now be
described in conjunction with the drawings in which:

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 is a simplified block diagram of an NT® operating
system architecture during a process of opening a file is
shown;

FIG. 2 is a simplified block diagram of an NT® operating
system architecture during a process of IRP processing is
shown;

FIG. 3 is a simplified block diagram of an operating
system according to the invention;

FIG. 4 is a simplified block diagram of a system for
opening a file such as that shown in FIG. 1 modified
according to the invention;

FIG. 5 is a simplified flow diagram of a method of storing
data in a storage medium forming part of a system such as
that of FIG. 1;

FIG. 6 is a simplified flow diagram of a method of
providing software settable access privileges within Win-
dows NT®; and,

FIG. 7 is a simplified block diagram of the invention
wherein the file system layer includes means for performing
the functions of the trap layer.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1, a simplified block diagram of a
Windows NT® (NT) operating system architecture during a
process of opening a file is shown. NT drivers are hidden
from end users by an NT protected subsystem that imple-
ments an already familiar NT programming interface.
Devices are visible only as named file objects controlled by
the NT Input/Output (I0) Manager to user-mode programs
including protected subsystems.

An NT protected subsystem, such as the Win32®
subsystem, passes 10 requests to the appropriate kernel-
mode driver through the IO system services. A protected
subsystem insulates its end users and applications from
having to know anything about kernel-mode components,
including NT drivers. In turn, the NT IO Manager insulates
protected subsystems from having to know anything about
machine specific device configurations or about NT driver
implementations.

The NT 10 Manager’s layered approach also insulates
most NT drivers from having to know anything about the
following: whether an IO request originated in any particular
protected subsystem, such as Win32 or POSIX; whether a
given protected subsystem has particular kinds of user-mode
drivers; and, the form of any protected subsystem’s 10
model and interface to drivers.

The 10 Manager supplies NT drivers with a single 10
model, a set of kernel-mode support routines. These drivers
carry out IO operations, and a consistent interface between
the originator of an IO request and the NT drivers that
respond to it results. File system requests are a form of 10
request.

A subsystem and its native applications access an NT
driver’s device or a file on a mass-storage device through file
object handles supplied by the NT IO Manager. A sub-
system’s request to open such a file object and to obtain a
handle for IO to a device or a data file is made by calling the
NT IO system services to open a named file, which has, for
example, a subsystem-specific alias (symbolic link) to the
kernel-mode name for the file object.

The NT IO Manager, which exports these system services,
is then responsible for locating or creating the file object that
represents the device or data file and for locating the
appropriate NT driver(s).

US 6,654,864 B2

5

The system follows a process described below in accor-
dance with FIG. 1 for performing a file open operation. The
subsystem calls an NT IO system service to open a named
file. The NT IO Manager calls the Object Manager to look
up the named file and to help it resolve any symbolic links
for the file object. It also calls the Security Reference
Monitor to check that the subsystem has the correct access
rights to open that file object.

If the volume is not yet mounted, the IO Manager
suspends the open request, calling one or more NT file
systems until one of them recognises the file object as some
thing it has stored on one of the mass storage devices the file
system uses. When the file system has mounted the volume,
the IO Manager resumes the request.

The IO Manager allocates memory (a RAM Cache) for
and initialises an IRP (IO request packet) for the open
request. To NT drivers, an open is equivalent to a “create”
request. The IO Manager calls the file system driver, passing
it the IRP. The file system driver accesses its IO stack
location in the IRP to determine what operation to carry out,
checks parameters, determines if the requested file is in
cache memory, and, if not sets up the next lower driver’s 10
stack location in the IRP.

Both drivers process the IRP and complete the requested
10 operation, calling kernel-mode support routines supplied
by the I0 Manager and by other NT components. The
drivers return the IRP to the IO Manager with the 1O status
block set in the IRP to indicate whether the requested
operation succeeded and/or why it failed. The IO Manager
gets the 10 status from the IRP, so it can return status
information through the protected subsystem to the original
caller. The IO Manager frees the completed IRP.

The IO Manager returns a handle for the file object to the
subsystem if the open operation was successful. If there was
an error, it returns appropriate status information to the
subsystem.

After a subsystem successfully opens a file object that
represents a data file, a device, or a volume, the subsystem
uses the returned file object handle to request that device for
10 operations typically in the form of read, write, or device
10 control requests. These operations are carried out by
calling the IO System services. The IO Manager routes these
requests as IRPs sent to appropriate N'T drivers.

Referring to FIG. 2, a simplified block diagram of an
NT® operating system architecture during a process of IRP
processing is shown. The I0 Manager calls the file system
driver (FSD) with the IRP it has allocated for the sub-
system’s read/write request. The FSD accesses its [0 stack
location in the IRP to determine what operation it should
carry out.

The FSD sometimes breaks the originating request into
smaller requests by calling an IO support routine one or
more times to allocate IRPs, which are returned to the FSD
with zero-filled 10 stack location(s) for lower-level driver
(s). At its discretion, the FSD can reuse the original IRP,
rather than allocating additional IRPs as shown in FIG. 2, by
setting up the next-lower driver’s 10 allocation in the
original IRP and passing it on to lower drivers.

For each driver-allocated IRP, the FSD calls an 10 support
routine to register an FSD-supplied completion routine so
the driver is able to determine whether a lower driver
satisfied the request and free each driver allocated IRP when
lower drivers have completed it. The IO Manager calls the
FSD-supplied completion routine whether each driver-
allocated IRP is completed successfully, with an error status,
or cancelled. A higher-level NT driver is responsible for

10

15

20

25

30

35

40

45

50

55

60

65

6

freeing any IRP it allocates and sets up on its own behalf for
lower-level drivers. The I0 Manager frees the IRPs that it
allocates after all NT drivers have completed them. Next, the
FSD calls an 10O support routine to access the next lower-
level driver’s IO stack location in its FSD-allocated IRP in
order to set up the request for the next-lower driver, which
happens to be the lowest-level driver in FIG. 2. The FSD
then calls an IO support routine to pass that IRP on to the
next driver.

When it is called with the IRP, the physical device driver
checks its IO stack location to determine what operation
(indicated by the IRP MJ XXX function code) it should
carry out on the target device, which is represented by the
device object in its 1O stack location and passed with the IRP
to the driver. This driver can assume that the IO Manager has
routed the IRP to an entry point that the driver defined for
the IRP-MJ XXX operation (here IRP MJ READ or IRP MJ
WRITE) and that the higher-level driver has checked the
validity of other parameters for the request.

If there were no higher-level driver, such a device driver
would check whether the input parameters for an IRP MJ
XXX operation are valid. If they are, a device driver usually
calls 10 support routines to tell the IO Manager that a device
operation is pending on the IRP and to either queue or pass
the IRP on to another driver-supplied routine that accesses
the target device in the form of a physical or logical device
such as a disk or a partition on a disk.

The 10 Manager determines whether the device driver is
already busy processing another IRP for the target device,
queues the IRP if it is, and returns. Otherwise, the 10
Manager routes the IRP to a driver-supplied routine that
starts the 1O operation on its device.

When the device interrupts, the driver’s interrupt service
routine (ISR) does only as much work BS as is necessary to
stop the device from interrupting and to save necessary
context about the operation. The ISR then calls an IO
support routine with the IRP to queue a driver-supplied DPC
routine to complete the requested operation at a lower
hardware priority than the ISR.

When the driver’s DPC gets control, it uses the context as
passed in the ISRs call to IoRequestDpc to complete the IO
operation. The DPC calls a support routine to dequeue the
next IRP when present and to pass that IRP on to the
driver-supplied routine that starts IO operations on the
device. The DPC then sets status about the just completed
operation in the IRPs IO status block and returns it to the IO
Manager with loCompleteRequest.

The 10 Manager zeroes the lowest-level driver’s 10 stack
location in the IRP and calls the file system’s registered
completion routine with the FSD-allocated IRP. This
completion routine checks the IO status block to determine
whether to retry the request or to update any internal state
maintained about the original request and to free its driver-
allocated IRP. The file system often collects status Informa-
tion for all driver-allocated IRPs it sends to lower-level
drivers in order to set IO status and complete the original
IRP. When it has completed the original IRP, the IO Manager
returns NT status, the subsystem’s native function, to the
original requestor of the 10 operation.

FIG. 2 also shows two IO stack locations in the original
IRP because it shows two NT drivers, a file system driver
and a mass-storage device driver. The 10 Manager gives
each driver in a chain of layered NT drivers an 10 stack
location of its own in every IRP that it sets up. The
driver-allocated IRPs do not necessarily have a stack loca-
tion for the FSD that created them. Any higher-level driver

US 6,654,864 B2

7

that allocates IRPs for lower-level drivers also determines
how many IO stack locations the new IRPs should have,
according to the StackSize value of the next-lower driver’s
device object.

An NT file system driver accesses the file object through
its 10 stack location in IRPs. Other NT drivers usually
ignore the file object.

The set of IRP major and minor function codes that a
particular NT driver handles are sometimes device-type-
specific. However, NT device and intermediate drivers usu-
ally handle the following set of basic requests:

IRP MJ CREATE—open the target device object, indi-

cating that it is present and available for IO operations;

IRP MJ READ—transfer data from the device;

IRP MJ WRITE—transfer data to the device;

IRP MJ DEVICE CONTROIL—set up or reset the device
according to a system-defined, device, specific 10
control code; and

IRP MJ CLOSE-~close the target device object.

In general, the IO Manager sends IRPs with at least two
10 stack locations to device drivers of mass-storage devices
because an NT file system is layered over NT drivers for
mass-storage devices. The 10 Manager sends IRPs with a
single stack location to any physical device driver that has
no driver layered above it.

Referring to FIG. 3, a block diagram of an operating
system is shown. The block diagram presents a simplified
view of operating system functionality according to the
invention. An application layer for supporting application
execution communicates with an input/output layer of the
computer. The input/output layer includes a display and a
file system layer. The application layer communicates with
the file system layer for performing read operations and
write operations with storage media. Disposed between the
application layer and the file system layer is a trap layer also
referred to as a filter layer. Each file system access request
that is transmitted from the application layer to the file
system layer is intercepted by the trap layer. In the trap layer
restrictions relating to access privileges are implemented.
For example, some requests are blocked and error messages
are returned to the application layer. Other requests are
modified and the modified request passed onto the file
system. When a data store is read only, a request to open a
file for read write access is modified to an open file for
read-only access; a request to delete a file is blocked and an
error message is returned. The use of a trap layer is appli-
cable when the present invention is implemented within an
existing operating system such as Windows NT®.
Alternatively, an operating system supporting restricted
write access is designed and restrictions relating to access
privileges are implemented within the file system layer.

Referring to FIG. 4, a simplified block diagram of open-
ing a file within Windows NT® according to the invention
is shown. The diagram is based on the diagram of FIG. 1.
The thick black line represents the trap layer or filter layer
for preventing some file system operations from passing
from the application layer to the file system layer.
Accordingly, a data store device operates as a read/write
device with a single device driver. The trap layer prevents
write operations or, alternatively, other predetermined
operations from being performed on a specific data store.
The trap layer achieves this by blocking some requests and
by modifying other requests. In this way, some operations
are prevented without requiring modifications to existing
applications. Thus, one data store may be read only while
another is read/write. Unlike prior art implementations, an

10

15

20

25

30

35

40

45

50

55

60

65

8

application requesting a write operation to a data store that
is read-only, receives an accurate and appropriate error
message. There is no data lost by the device driver and, in
fact, the device driver is freed of the trouble of dealing with
file system commands which cannot be completed.

Also, the use of the trap layer allows for implementation
of more complicated file access privileges based on data
stored within each individual storage medium. For example,
a storage medium may indicate read-write access but may
not support delete operations. Device drivers perform low
level commands such as read and write. Delete, is a write
operation, the device driver performing write operations to
obfuscate of overwrite a file. As is evident, the device driver
supports delete operations as does any read/write data store.
However, by indicating to the trap layer that delete opera-
tions are not supported, all delete requests passed from the
application layer for the specific data store are intercepted by
the trap layer and an error message is returned to the
application layer. No delete operation for a file is passed to
the file system layer and therefore, the device driver does not
perform the write operations for obfuscating or overwriting
the file because none is received. It is evident that preventing
file deletion is advantageous for protecting archived data and
data histories.

Another operation which is advantageously restricted is
overwriting of files. When a request is made to overwrite a
file, typically the data within the file is overwritten. Over-
writing of file data is a simple work around to perform a file
delete when that operation is blocked. Alternatively in some
devices, the data to overwrite is written to an unused portion
of a storage medium and an address of the file data within
afile allocation table is changed. The storage locations of the
old file data are then considered free. Preventing data
overwrite is performed according to the invention by modi-
fying requests or blocking requests as necessary. Further, by
trapping requests to overwrite file data according to the
invention, a user friendly error message becomes possible.
When an application provides a request to overwrite a file,
an error message indicating that overwrite is not permitted
and that a file name is needed to save the data is provided.
The trap layer, upon receiving the file name from the error
message, modifies the request in accordance therewith and
in accordance with permitted operations and passes the
modified request to the file system layer. Accordingly, data
integrity is preserved with minimal inconvenience to users
of the system.

It is also useful to restrict access to file access permis-
sions. Often, permissions are global across a storage
medium and altering of the permissions is not desirable.
Still, many operating systems provide for file and storage
medium related access privileges. These are modifiable at
any time. Since privileges are generally static, there are
advantages to setting up privileges for a storage medium
such that during normal operation and with normal file
system operations, the privileges are static. Preferably, there
is at least a way to modify the global privileges in case it is
desirable to do so. Preventing alteration of privileges pre-
vents individuals having access to files from modifying
access privileges in any way.

Another operation that is usefully restricted is overwriting
of zero length files. Some operations within some applica-
tions create a zero length file and then overwrite it. Thus
preventing overwriting of zero length files directly affects
those applications. An example of such an application and
operation is the “save as” command in Microsoft Word®.
Thus, preventing overwriting of zero length files effectively
prevents “save as” from functioning on the associated
medium.

US 6,654,864 B2

9

Similarly, renaming a file is useful for obfuscating data.
Preventing renaming of files prevents hiding existing files or
making them more difficult to locate. For example, changing
a client’s information file name from “Client 101 Informa-
tion” to “To Do Feb. 18” would make the file hard to locate.
Thus, rename is an operation that it is desirable to restrict.
Reasons for restricting the other listed operations are evi-
dent. Further, restricting other operations may also be advan-
tageous and the present application is not limited to these
operations.

Above mentioned operations which are advantageously
restricted include overwriting files, changing file access
permissions and medium access privileges, renaming files,
formatting a medium and so forth. For example, a medium
that does not allow any of the above mentioned operations
provides a complete archival history of the medium’s con-
tent and prevents alteration or deletion of the data. Such a
medium is very useful for backing up office files or elec-
tronic mail.

Referring to FIG. 5, a flow diagram of a method of storing
data in a storage medium forming part of a system such as
that of FIG. 3 is shown. An application in execution on the
system seeks to store a data file on a storage medium within
the file system layer of the system. A request and data for
storage within the file is transmitted from the application
layer to the file system layer. The request includes an
operation and data relating to a destination storage medium
on which to store the data. The trap layer intercepts the
request and the data and determines whether the storage
medium selected supports the operation. When the storage
medium supports the operation, the request and the data is
passed on to the file system layer. When necessary, the
request is modified prior to provision to the file system layer.
In the file system layer the operation is conducted according
to normal file system layer procedures. When the storage
medium does not support the operation in its original or a
modified form, the trap layer returns an indication of this to
the application layer. The operation and the data are not
passed onto the file system layer. This provides additional
access privilege functionality.

Referring to FIG. 6, a simplified flow diagram of a method
of providing software settable access privileges within Win-
dows NT® is shown. A storage medium is mounted within
a computer system. The storage medium has stored thereon
data relating to access privileges for the storage medium.
Upon mounting the storage medium, data relating to physi-
cal limitations of the read/write device are loaded into the
device driver for that device within the file system layer. The
limitations are recognised by the system software. Also upon
mounting the storage medium, the data relating to access
privileges for the storage medium are loaded into the trap
layer. The trap layer limits operations performed on the
storage medium to those supported by the read/write device
by limiting the requests passed onto the file system layer or,
when the trap layer forms part of the file system layer, by
filtering and/or modifying the requests. The data relating to
access privileges for the storage medium are used to limit
those requests provided to the file system layer.

When the storage medium is a data store for archiving
purposes, there are evident advantages to treating the storage
medium as a read-only storage medium. For example, once
the data store is full, setting it to read-only allows its use
without risking tampering or accidental modification.
Therefore, media specific access privileges are advanta-
geous.

Referring to FIG. 7, a simplified block diagram of the
invention wherein the file system layer includes means for

10

15

20

25

30

35

40

45

50

55

60

65

10

performing the functions of the trap layer is shown. Such an
embodiment, operates in a similar fashion to those described
above. The file system receives all file access requests and
compares them to those that are not permitted. When an
access command is not permitted on an indicated storage
medium, an error message is returned to the application
layer. When an access command is permitted, it is performed
on the appropriate storage medium. The access command
may be that requested or, alternatively, a modified form of
the requested command resulting in a supported operation.

The term logical storage medium is used herein and in the
claim that follow to designate either a physical storage
medium or a portion of physical storage medium that is
treated by the operating system as a separate storage
medium. Thus, a partitioned hard disk with two partitions
consists of one physical storage medium and two logical
storage media.

Numerous other embodiments of the invention may be
envisaged without departing from the spirit and scope of the
invention.

What is claimed is:

1. A method of restricting access by a computer to a
logical storage medium other than a write once medium in
communication with the computer, the method comprising
the steps of:

providing an indication of a data write access privilege for
the entire logical storage medium, the data write access
privilege indicative of a restriction to alteration of a
same portion of each file stored on the logical storage
medium; and

restricting file access to the logical storage medium in
accordance with the indication while allowing access to
free space portions of the same logical storage medium.

2. Amethod as defined in claim 1, comprising the steps of:

writing further file data to the free space portions of the

same logical storage medium; and,

restricting file access to the further file data in accordance

with the indication while allowing access to remaining
free space portions of the same logical storage medium.

3. The method as defined in claim 1, wherein the indica-
tion of a data write access privilege is one of the following:
write access without delete, write access without rename;
write access without overwrite, and write access without
changing file access privileges.

4. The method as defined in claim 1, wherein storage
medium is a removable storage medium.

5. A method of restricting access by a computer to a
storage medium other than a write once medium in com-
munication with the computer, the method comprising the
steps of:

providing an indication of a data write access privilege for

the entire logical storage medium indicating a disabled
operation relating to alteration of a portion of each file
stored within the logical storage medium, the indication
other than a read only indication; and

restricting file access to each file within the logical storage

medium in accordance with the same indication while
allowing access to free space portions of the same
logical storage medium.

6. The method as defined in claim 5, wherein the indica-
tion comprises at least one of the following: write access
without delete, write access without rename; write access
without overwrite, and write access without changing file
access privileges.

7. The method as defined in claim 6, wherein logical
storage medium is a single physical storage medium and

US 6,654,864 B2

11 12

wherein a single physical storage medium consists of a operation relating to alteration of data within the logical
single logical storage medium. storage medium, the indication other than a read only

8. The method as defined in claim 6, wherein storage indication, the disabled operations supported by the
medium is a removable storage medium. storage medium; and

9. A method of restricting access by a computer 10 a 5 restricting write access to data within the logical storage
storage medium other than a write once medium in com- medium in accordance with the same indication while
munication with the computer, the method comprising the allowing access to free space portions of the same
steps of: logical storage medium.

providing an indication of a data write access privilege for
the entire logical storage medium indicating a disabled * ok k& ok

